A Design Pattern Oriented Programming
Environment

Diplomarbeit

Universitdt Rostock
Fachbereich Informatik

vorgestellt von Seemann, Normen

geboren am 31.05.1976 in Rostock

Matrikel-Nr.: 094200998

Betreuer: Prof. Dr.-Ing. habil. Peter Forbrig,
Dr.-Ing. Ralf Limmel

Abgabedatum: 01.10.1999

Zusammenfassung

FEin Entwurfsmuster beschreibt ein in unserer Umwelt bestindig wiederkehrendes Problem und erldutert den
Kern der Losung fiir dieses Problem, so dafl diese Losung beliebig oft anwendbar ist, ohne dafl man sie
jemals ein zweites Mal gleich ausfithren mufl. Das Ziel dieser Arbeit besteht nun darin, diesen abstrakten
Grundgedanken formal in einem Modell zu fassen, das Entwurfsmuster und damit vebundene Konzepte direkt
unterstiitzt und als Erweiterung des objektorientierten Programmiermodells verstanden werden kann. Im
Anschlufl daran wird ein Sprachentwurf fiir eine sogenannte design pattern orientierte Programmiersprache
vorgestellt, die es ermdglichen soll, Entwufsmuster zu implementieren und wiederzuverwenden.

Abstract

A design pattern describes a problem which occurs over and over again in our environment, and then de-
scribes the core of the solution to that problem, in such a way that one can use this solution many times
over, without ever doing the same way twice. The aim of this master’s thesis is to formalize this abstract
basic idea in order to define a model which directly supports the notion of the design pattern and related
concepts and which additionally can be conceived as extension of the object oriented model. Following that,
a prototype of a design pattern oriented programming language is introduced allowing to implement and to
reuse design patterns in an efficient manner.

CR-classification
D.1.5, D.2.1, D.2.2, D.2.3, D.2.13, D.3.1, D.3.2, D.3.3, F.3.2, F.3.3

Keywords
programming techniques, design patterns, software engineering, software development, reusability, program-
ming languages, algebraic specifications, abstract data types, denotational semantics

Remarks

The results of the master’s thesis by Stefan Biinnig ([6]) and this master’s thesis have been contributed to
paper [7]. For this purpose, the theoretical framework and the language PP have been revised and modified.
Therefore, terminology and the notations used in this thesis may slightly differ from the terminology and
the notations used in [7]. However, the meanings of notions and concepts have been preserved.

Contents

Introduction

Design pattern oriented programming

2.1 The object oriented programming model L Lo
2.2 Implementing design patternso L
2.2.1 The notion of the design pattern oo oL
2.2.2 Problems when design patterns are implemented,
2.3 Design pattern oriented software engineering oL oL
2.3.1 The design pattern in PP, Instantiation,
2.3.2 Implementations, locations, levels and visible elements
2.3.3 Refinements L L
2.3.4 Reuse vs. Instantiation of design patterns
2.4 Related work e e
2.5 Remarks and outlook L e
Basic notions of algebraic specifications and abstract data types
3.1 Partially ordered sets, dependency sets Lo L o
3.2 Signatures, Y-algebras L. e
3.3 Visibility of operationso
3.4 Terms and their interpretation Lo
3.5 Operators on signatureso e e e e
3.6 Operators on specifications oL e e e
3.7 Relationsin SPEC e e e
3.7.1 Object oriented relations L
3.7.2 The dependency relation Lo
A design pattern specification framework
4.1 The notion of a design pattern specificationo
4.2 The refinement relationo
A design pattern oriented command language
5.1 State based signatures L. L.
5.2 Object algebras L
5.3 Commands and method implementations L.
5.3.1 Commands and their execution Lo oo oL
5.3.2 Method implementations L
5.3.3 Command translations

10
10
12
14
14
16
18
22
23
24

25
25
28
29
30
33
37
38
38
39

40
40
42

6 A design pattern oriented imperative kernel language

6.1 Thesyntax of PP o e e e e
6.2 The semantics of PP 0 e e e e e e e e
6.3 A deduction system for components and design patternsin PP
6.4 The satisfiability of design patterns
7 Final remarks
7.1 Related work L e
7.2 Future work Lo
7.3 Conclusion L e e e e e e

A The syntax of PP in EBNF
B Basic notions of partial finite mappings (cf. [5])

C Selected design pattern implementations
Cd List . ..o o e e e e
C.2 Sublyping« o e
C.3 Composite e e
C.4 GraphicComposite o e

60
60
63
70
73

74
74
74
75

76

78

Chapter 1

Introduction

The development of large scale software systems in a systematic way is still a challenging task in software
engineering. The use of structural, modular and object oriented programming techniques and environments
have proven to be powerful and reliable for the creation of correct, reusable and maintainable software.

Specifically, the object oriented programming model has improved the quality of software by providing
structures for better support of abstraction, encapsulation and reusability. In recent years, these properties
have become more important since hardware and software systems have grown bigger and more complex.
Also, customers have made higher requirements on the quality of software. Object oriented programming
languages like Eiffel, Smalltalk or C++ provide basic facilities for network programming, database access,
etc. in form of class libraries which exploit these concepts. This helps developers concentrate on the solving
of the actual problems, without having to spend time on reinventing already implemented solutions to com-
mon problems.

The object-oriented paradigm primarily involve objects. These usually represent abstractions of real
world entities. Objects are typically defined by classes in programming languages. Classes representing
different entities may be related to each other in several different ways. These normally abstract the rela-
tionships between the real-word entities that they model. Relationships between classes can be categorized
into two kinds - static and dynamic. Static relationships operate at the class level, and include inheritance
and subtyping. Dynamic relationships such as association and aggregation operate on the object instance
level. The relationships together form what is called the class structure.

Classes and relations between classes have to be identified by the designer. These can be achieved using
object oriented analysis and design techniques. A specific implementation of the classes and their relations
in an object oriented programming language represents the solution of the problem. It is the developer’s
responsibility to ensure that significant portions of the implementation can be reused in an appropriate way.
The ability to do this usually requires deep understanding of object oriented programming techniques, as
well as expertise in implementing software systems.

Anectdotal experience in [8] suggests that similar problems require similar designs of classes and their
structures. These structures of classes and relationships lead to the notion of a design pattern. However, a
design pattern captures more than just a class structure - it also contains algorithms for the so-called higher
behaviour and paradigms which describe the purpose of the design pattern. In [8] there are listed 23 such
design patterns for various purposes. Knowledge of these design pattern can help to create better software
in terms of reusability, maintainability and extensibility.

It still remains the task of the developer to implement applications of a design pattern as part of a
problem solution. The elements which describe such a design pattern may have to be forced into an ob-

ject oriented form. If the design pattern had been implemented for a very specific problem, and needs to
be used in a second similar problem that’s different in detail, it would have to be reimplemented from scratch.

Object oriented programming techniques allow the reuse and extension of classes by subtyping, inheri-
tance and other refinement methods. However, since object oriented frameworks do not support any notion
of a design pattern, it is impossible to reuse a design pattern itself.

In chapter 2, design pattern oriented notions are introduced informally. Then, a formal approach will be
presented in the following chapters. A design pattern oriented model will be introduced as extension of the
object oriented model based on algebraic specification techniques. It directly supports design patterns and
design pattern oriented refinements in order to overcome the problems mentioned above. In chapter 6, this
model will then be used to describe the denotational semantics of the design pattern oriented imperative
programming language PP. PP is a kernel language that supports fundamental features of design pattern
oriented programming. In this way, a formal basis is presented for subsequent considerations in this area.

Chapter 2

Design pattern oriented programming

The aim of this chapter is to introduce the way of design pattern oriented programming. To this end, it is
necessary to define briefly some basic notions of the object oriented programming model which are crucial
for the further understanding of this thesis. This is especially important for the creation of a common unique
terminology since many of the following notions have different meanings in literature which are sometimes
even contradicting to each other. In order to be independent from any programming language, the following
summation of object oriented elements and concepts is based on the view of things from a rather theoretical
perspective.

2.1 The object oriented programming model

Object, attributes — Objects in an object oriented program are abstract entities which can represent objects
of the real world. From the perspective of the developer, objects contain data and methods which operate
on this data. Since these methods represent the only interface for the access to the data of an object,
the object is said to encapsulate its data. The data itself are usually structured by the use of typed
attributes. The data, i.e. the state of all attributes, define the state of the object at particular time.
An object exists at the runtime of an object oriented program in its life cycle. The life cycle begins with
the creation of the object and lasts until its deletion. Only in the time between, the so-called lifetime
of an object, an object is called valid.

In order to distinguish a valid object from another valid object, it is required that each object must
be uniquely identifiable at all times. This can be achieved by the use of a unique system-wide object
identity. The object identity is pre-given by the system can not be changed during the whole life cycle
of the object. Therefore, an object identity remains constant regardless the current state of the object.

Abstract data type (ADT) — ADTs are powerful means for the structured development of object oriented
programs. They represent the theoretical basis for the typing of objects in object oriented programming
languages, i.e. they are the semantic counterpart of classes and class specifications. Conceptually an
ADT is a set of models. In this approach, these models are Y-algebras which correspond to a signature
Y of sorts and operation symbols. A Y-algebra defines carrier sets for the sorts in ¥ and functions on
these carrier sets for the operation symbols in X. In this way, the signature ¥ describes the structure
of every Y-algebra. Chapter 3 provides a detailed, formal introduction to abstract data types.

Class specifications — Algebraic specification techniques are used to restrict the models of an ADT to the
subset of all possible models that meet certain requirements. A class specification can be considered as
abstract data type that is described by a language construct.

In functional algebraic specification languages, constraints and axioms specify the valid models of an
ADT. Constraints are used to restrict carrier sets to a particular term generated form whereas axioms

anObject]
anotherObject
objectReference .H
ata

Figure 2.1: An example for the reference of an object to another object.

are predicates which can be interpreted in a particular algebra. They are used to ensure that the
functions in that algebra have certain properties.

Classes and interfaces — A class specification can also be described by a class which is an imperative
language construct that makes use of object oriented notions like attributes, methods and method im-
plementations. Semantically, the signature of the underlying abstract data type defines sorts for object
identities and attribute-based object states in order to provide a foundation for the representation of
objects. The corresponding algebras are called object algebras (cf. [5]). In this approach, methods
are always associated with a class. Therefore, they are also called selfish methods and represented by
functions in the underlying ADT. They are implemented by an imperative command language speci-
fying the functionality of the abstract data type. For this purpose, the implementation is executed in
object algebras to ensure certain properties in an algebra of the ADT to hold. This process takes place
analogously to the interpretation of terms provided in the functional approach. Roughly speaking, it
can be said that the functional and the imperative approach for the description of class specifications
are equivalent in their expressiveness.

From the perspective of the developer, a class can be conceived as a factory creating objects or as
entirety of all objects of that class. On the other hand, it is often said that an object is associated with
a certain class. Both ways are convenient to think of when speaking about the relationship between a
class and its objects.

An interface of a class comprises the methods and attributes that are associated with that class.

Types — On the one hand, the term t¢ype is used to express that the value of an element of a programming
language, i.e. a variable, a parameter, etc., is an an element of certain domain. In this approach, this set
corresponds to a carrier set of a sort in a particular Y-algebra. On the other hand, two objects are of the
same type if they have the same interface, i.e. attributes can be accessed and methods can be invoked on
both objects in the same way. This sort of interface compatibility can be taken for granted if both object
are associated with one class. Therefore, objects of the same class are also of the same type. In the
presented setting of this thesis, the notion of a type as domain of values implies interface compatibility,
since the same functions can be called on two objects of the same domain in the underlying ADT.

Dynamic relations between objects, reference semantics — Dynamic relations between objects are usually
modelled by the attributes of the participating objects. A typed attribute contains a value of a basic
type (like integer or boolean) or the object identity of another object of a particular type. Objects can
be linked to each other using this method which is also known as reference semantics. This type of
relation between objects is called dynamic, because objects can participate in new relations or existing
relations can be broken off dynamically during the runtime of the program.

However, this relatively simple way of associating one object to another one can cause a variety of
problems in object oriented programs. The negligent handling of object identities can lead to what is
called dangling pointers and to memory leaks. Another disadvantage is that certain requirements on the
particular relation (e.g. the demand for symmetry of the relation) can not be guaranteed.

Figure 2.1 depicts the notation for a reference of an object to another object. The name of the attribute
is denoted at the origin of the arrow.

Static relations between objects, relations between classes — Beside the mentioned dynamic relations be-
tween objects, there can also exist relations between objects which are static in nature and immutable
during the life cycle of the participating objects. These relations are usually not directly associated with
objects but with their corresonding classes.

a) [server b) [superclas§ ©)

JAN

client subclass

Figure 2.2: Notations of relations between classes: a) the clientship relation b) subtyping c) inheritance

In the following, the three main relations in object oriented programming are briefly described. They
will be introduced formally in chapter 3.

Clientship relation — The client class uses the server class and adds its own functionality by new
attributes and methods. This kind of relation is conceptually associated with the horizontal com-
position of classes.

Subtyping — A subclass subtypes a superclass if the subclass contains at least the attributes and the
methods of the superclass’. Semantically, there is a strong interrelation between objects of the
subclass and objects of the superclass. Objects of the subclass can also be treated as objects of the
superclass. This conceptually provides the foundation for the substitution principle.

Usually programming languages provide an operator to create a subclass based on a specified
superclass. Then it can be implied that if a class is created using such an operator, the class is also
in a subtype relation to the class specified in the operator.
As a matter of fact, subtyping between classes, alike similar relations between classes, induces a
subtype relation between the abstract data types corresponding to those classes. Later it will be
become clear that it is important to make this distinction.

Inheritance — The heir class inherits the interface and the functionality from an ancestor class via
renamings and model inclusion (simple inheritance) or model relations (generalized notion of in-
heritance).

Subtyping and inheritance are orthogonal concepts. While subtyping is used to describe relationships
between carrier sets of superclass and subclass within a model of the ADT, the aim of inheritance is to
refine an ADT consisting of many models. Conceptually, subtyping relates objects whereas inheritance
relates models. Therefore it is said that subtyping is a fine-grain structuring mechanism in contrast to
inheritance which can be considered as a large-grain structuring mechanism (cf. [5]).

However, a clear distinction between these two concepts can hardly be found in todays object oriented
programming languages. It is of importance to notice that most object oriented programming languages
implement subtyping but call it inheritance (like C++). FEiffel even provides a notion of inheritance
that is rather a mixture of inheritance and subtyping.

Using these relations, the deseigner can arrange classes to form hierarchies respectively directed acyclic
graphs (DAGs). The corresponding graphic notations are depicted in figure 2.2.

Substitution principle, subtype polymorphism and dynamic binding — The substitution principle is closely
related to the subtyping of classes. It means that an object of a certain class can always be substituted
by an object of any subclass of this class. This requires several properties of the interface to be satisfied.
The methods and attributes of the superclass must also be defined for each subclass. This is ensured by
the subtype relation between classes. However, on the level of the programming language, the developer
certainly does not want to reimplement all methods or redefine the attributes of a superclass. In fact,

IThis is a very informal statement. Subtyping will be introduced formally in chapter 3.

instead of doing this, a developer usually tries to reuse existing implementations. Hence, methods can
be overridden. Overriding means, that a particular method can get a new implementation in a subclass.
In most cases, this new implementation of the method calls the old implementation in order to reuse
code and to avoid an implementation overhead. If a method is not overridden by a new implementation
it remains unchanged in the subclass. Semantically, all implementations of a method, i.e. the original
implementation in the class where the method is defined first and the reimplementations when this
method is overridden, are used to define the corresponding function in the underlying abstract data
type. However, each such implementation, considered separately, only determines what actions have to
be performed when this method is invoked for objects of the type this particular implementation is de-
fined for. This means that according to the dynamic type? of the object, an appropriate implementation
is selected. This procedure is known as dynamic binding or dynamic dispatch on selfish methods.

2.2 Implementing design patterns

2.2.1 The notion of the design pattern

The first step in the development of a large scale object oriented program is the analysis of the problem in
the real world. Objects and their relations have to be identified and abstracted in order to find a starting
point for the object oriented design. Appropriate methods for this process can be found in [2].

The object oriented design as second step follows this analysis phase. Common properties of objects are
identified in order to find potential candidates for classes. Additionally, roles and responsibilities of objects
as well as interactions between them are investigated. By doing this, the developer tries to determine dy-
namic and static relations between objects and classes. However, this whole process is not algorithmic in
nature. It requires the developer to be experienced and creative, since he already has to focus on reusability
and maintenance beside the actual solution of the problem.

Reuse of object oriented programs means that existing classes or class structures are reused. This is not
always a simple process, since these classes can be tangled with other, more specific classes which are not
subject to reuse. The developer is supported in his endeavor by object oriented programming languages
providing features like subtyping, composition, etc. But, as a matter of fact, it is the task of the developer
to use these means properly in order to find the necessary abstraction level for a successful reuse.

After the design and the implementation of several object oriented applications one can recognize that
similar problems often require similar class structures and similar implementations. The abstraction of these
structures leads to the notion of the design pattern. The (informal) definition of a design pattern can be
found in [8].

Quotation 2.1 design pattern (informal)

"Each pattern describes a problem which occurs over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that you can use this solution a million times over,
without ever doing the same way twice’ (Christopher Alexander)?3

O

As a matter of fact, a design pattern in its abstract sense has nothing special to do with computer science
in general or with object oriented programming in particular. However, the nature of a design pattern as

2The dynamic type of an object is the type of the object whereas the static type is the declared type of the variable, attribute,
etc. Sometimes, the dynamic type of an object will also be referred to as minimal type.

3This definition corresponds to patterns in the context of buildings and towns. However, this definition stands for the essence
of every kind of design pattern, especially for the design patterns in the context of computer science.

10

an abstract concept is to serve as a kind of template which is used in applications of this design pattern.
Applied to the object oriented world, one can think of a design pattern as an object oriented construct. Its
application represents the actual object oriented program.

The following uniform structure is given by [8] as fundamental way to describe design patterns.

Representation 2.2 Structure for the description of a design pattern (informal)*

Design pattern name and classification — The name of the design pattern conveys its essence succinctly.
The classification reflects the nature of the design pattern. It helps to find related design pattern.
Possible categories include creational, structural and behavioral design patterns.

Participants and their responsibilities — The components (classes) and/or objects participating in the de-
sign pattern and their responsibilities.

Component (class) structure — The components in the design pattern and their relations to each other
define the component structure which is graphically represented using a notation based on the Object
Modeling Technique (OMT). Additionally, methods and attributes for the components are listed here.

Interactions and Collaborations — Interactions an collaborations are crucial for the understanding of the
dynamic behavior of the design pattern. Graphic interaction diagrams are helpful to visualize the
information flow in the design pattern.

Higher behavior — The design pattern can also be conceived as an entity. The higher behavior describes
the behavior of a design pattern from a perspective above the components. It can be used to express
global integrity conditions or to define how a design pattern should react as a unit within the context of
other design patterns or classes.

O

As stated in the head of the above definition, such a structure can be used to describe a design pattern in
an informal way. This means that such a description can be interpreted in different ways. These ambiguities
are only avoidable if there is a design pattern oriented formalism for the description of a design pattern.
This formalism will then be called a design pattern oriented model. If the description of a design pattern is
written in a programming language which bases on such a design pattern oriented model then this program-
ming language is called design pattern oriented language and the description of the design pattern is called
implementation. The entirety of all concepts notions and ideas including the means for the implementation
of design patterns is called the design pattern oriented paradigm.

In the sequel, it will strictly be distinguished between the implementation and the application of a design
pattern. In the design pattern oriented paradigm it is possible to do both. This is an advantage over the
object oriented programming model.

The next section will explain why the facilities of object oriented programming languages are not suf-
ficient for implementations of design patterns. To this end, problems occurring when design patterns are
implemented in object oriented programming languages will be explained and underpinned using the exam-
ple of the composite design pattern.

The definition for a design pattern and the possibilities for its description given in this section are infor-
mal for the time being. The notion of a design pattern will be formally introduced in chapter 4.

4In [8] there are several other items listed. However, they are not needed for subsequent considerations within this thesis.
These items include Intent, Also known as, Known uses, etc. On the other hand, the category Higher behavior has been added.
Later, this will be relevant for the conception of a design pattern as entity.

11

2.2.2 Problems when design patterns are implemented

This section is opened with a thesis that is substantial for further considerations.

Thesis 2.3
Using object oriented programming techniques, it is possible to apply a design pattern to a special problem,
however, it is not possible to implement the design pattern itself. For this purpose, it is necessary to use

more advanced, design pattern oriented programming techiques.
O

The concepts provided by object oriented progamming languages, are sufficient even for the implemen-
tation of huge software systems. In certain situations the developer can even choose from several ways to
design a particular feature. Then, why are there problems implementing design patterns using the object
oriented programming model?

An adequate approach for the implementation of a design pattern in an object oriented programming
language could be to represent the components by actual classes of the language. Static relations between
components are modelled by object oriented relations. Responsibilities, interactions of the components of the
design pattern could be implemented by methods of the corresponding classes whereas the higher behaviour
could be implemented by global functions or by an additional class. The refinement process could then be
modelled by conservative object oriented mechanisms like subtyping, etc. However, a developer doing so will
soon encounter almost invincible problems.

For the following summation of problems it is assumed that an arbitrary design pattern is implemented in
an object oriented programming language supporting normal object oriented concepts (e.g. Fiffel or C++).
In this case, the following problems occur:

Encapsulation problems — A design pattern is a closed system which encapsulates its component structure

from the outside. However, an object oriented program usually consists of many homogeneous classes.
Some of these classes may be the result of an application of a design pattern. Other classes may have
been added by the developer. The consequence is a set of classes which are all treated in the same way.
Therefore, a separation of design pattern internals from external classes and other design patterns is not
possible. This problem will be called static encapsulation problem. The concept of nested classes has
been added in recent versions of the programming language Java. It overcomes the static encapsulation
problem easily. However, it is not part of the actual object oriented paradigm and therefore not part of
subsequent considerations.
Furthermore, classes are instantiated obtaining objects. However, the objects of an application of a
design pattern should be considered separately from all other objects. They can be grouped into dynamic
units which should be conceived as separate systems of objects. These units have to be encapsulated and
treated as entities which correspond to an instance on a higher level. An application of a design pattern
can have many such instances. Each instance is associated with an encapsulated group of component
instances. Hence, component instances should exist in a dependent, separate space. Object oriented
programming languages do not provide facilities for this extended concept of instances, therefore they
have to be simulated. However, analogously to the first mentioned problem, this can hardly be achieved
in an adequate way using object oriented programming languages without violating principles of good
and clean programming. This problem will be called dynamic encapsulation problem.

Reusability problems — The component structure of a design pattern is usually very abstract in nature. A
well designed design pattern should contain a general component structure which is not committed to
any application in the first place. When a design pattern is applied, the class structure of the appli-
cation is defined by the component structure of the design pattern. This process requires refinement
mechanisms like renamings and/or reimplementations to take place. In an object oriented language,
components and their interrelations can be represented by classes and object oriented relations. The

12

Client """" Component b‘—

operation
add(Component)

delete

Leaf Composite

children

forall g in children m

g.operation

operation operation cceefeeeeeeeeeeeeeed
add(Componentg) -----f---"" :

delete . add g to list m
B of children

Figure 2.3: The design pattern Composite (only structure).

 Client EEREREE Graphic b<—

draw
add(Graphic)
delete

A

. . . graphics
Line Circle Picture o
forall g in graphics m
draw draw [o - U 2
. g.draw

add(Graphic)y oo -

delete : add g to list m

e of graphics

Figure 2.4: An application of the design pattern Composite — The graphic Composite.

components are refined by application-specific methods and method implementations leading to the
classes of the application. However, using object oriented programming techniques, it is impossible to
refine a component of the source design pattern in an adequate way without breaking its object oriented
relations to other components. Therefore, the component structure of the design pattern can not be
transferred to its application. However, this property is essential for a proper application of a design
pattern. Thus, the developer is forced to reimplement the class structure of the design pattern in the ap-
plication without actually reusing the abstract component structure in the implementation of the design
pattern. This is a contradiction to the intuitive definition of a design pattern (cf. quotation 2.1) since
parts of the original design pattern are lost during the reuse process. A detailed description of reusabil-
ity problems the programmer can encounter can be found in [6]. Example 2.4 demonstrates this problem.

Example 2.4 Figure 2.3 depicts the component structure of the design pattern Composite as proposed in
[8] whereas figure 2.4 shows the structure of an application of this design pattern which could be used for
graphic programs, CAD software, etc. Graphic elements can either be elementar or groupings of graphic
elements. It can easily be recognized, that the component structure of design pattern is very similar to
the class structure of its application. Especially, the component Component and Composite in the design
pattern are obviously related to the classes Graphic and Picture in the application. If the design pattern is
implemented in an object oriented prorgamming language, it could be said that Graphic and Picture have
to be refinements of Component and Composite. Refinements in object oriented programming languages
correspond either to subtyping or to delegation.

Therefore, Graphic could be designed as subclass of Component in order to extend Component by a mecha-

13

nism to draw itself on the screen. Analogously, Picture could be designed as subclass of Composite in order
to implement a routine for the drawing of all contained graphic elements. In this case, however, Graphic
and Picture are not automatically in a subtyping relation as demanded by the graphic Composite. Both
classes do not know about their mutual refinements. Therefore, they can not be used in their intentional
way, since e.g. the draw method in Picture can not invoke the draw routine in Graphic since Picture uses
objects of type Component instead of using objects of type Graphic. One could argue that this problem
could be overcome by the use of multiple subtyping®. But in this case, the subtyping relation is specified
redundantly in the design pattern and in the application. Besides, readability, the subsequent reusability
and the maintainability of the code would suffer to a large extent.

O

A design pattern oriented programming model must provide solutions for these problems. Besides, it
also has to fulfill the following requirements.

Configurablility — A design pattern should support the development of software systems. Beside its actual
implementation which should be as abstract as possible and as concrete as needed, it is also important
that the refinement process itself is not rigid. It should rather be possible to configure the refinement,
e.g. it should be specified by the user.

Identifiability — This property is related to the encapsulation problems. A design pattern should be iden-
tifiable in the source code, i.e. classes of applications of a design pattern can be associated with that
design pattern. In analogy to that, the design pattern oriented programming model should also provide
mechanisms to identify application instances (cf. encapsulation problems).

2.3 Design pattern oriented software engineering

The preceeding sections proved the necessity for a design pattern oriented model, henceforth called Pattern-
Model, in order to support the desired features mentioned above. It will become intelligible in the sequel
that the introduced PatternModel can be conceived as an extension of the object oriented model.

This approach for a design pattern oriented model will eventually be used for the definition of the design
pattern oriented language PP. PP belongs to the class of imperative programming languages. Its syntax
bases on the syntax of OP as introduced in [5]. The meaning of the individual object oriented statements
and constructs should be obvious without further explanations.

This section is structured as follows. The first subsection introduces the design pattern in the context
of PP, its instantiation and its role in a design pattern oriented program. Several parts of a design pattern
are implemented using an imperative command language. In the second subsection, restrictions are imposed
on this language to ensure that an PP program is type safe. The subsection 2.3.3 addresses refinements
of design patterns in PP. A refinement represents a fundamental mechanism to reuse and combine design
patterns. The concluding section discusses the usage of design patterns in PP.

2.3.1 The design pattern in PP, Instantiation

The notion of the design pattern represents the fundamental element in PP. It can be pictured as static unit
which can be instantiated at runtime. In this process, an instance is associated with an identity and created
with an initial state. The state is then modified by functions, the identity, however, is immutable. Finally,
the instance is deleted. These three stages altogether form the life cycle of the instance. Up to this point, a

5 Picture subtypes both Composite and Graphic.

14

design pattern instance behaves identically like a normal object of a class.

A design pattern is specified by a language construct like e.g. the class construct in object oriented
programming languages. This design pattern construct must be powerful enough to implement a design
pattern according to representation 2.2, i.e. a design pattern implementation written in PP must reflect the
schematic structure of a design pattern given in representation 2.2. A design pattern in PP is defined as
follows.

Representation 2.5 design patterns in PP
A design pattern in PP constists of the following elements:

Components — Components implement the participants of the design pattern. They are described by

embedded component constructs. One can think of a component as a class in the object oriented sense
within the boundaries of the design pattern. This is also emphasized by the syntax of the component
construct which is very similar to the syntax in which classes are described in object oriented languages.
A component consists of attributes and methods implementing its responsibilites on a local level. More-
over, it can be in any object oriented relation to other components of the design pattern in order to
reflect the component structure of the design pattern. Components are not visible from outside the
design pattern, although, a component is aware of other design patterns. This means, that attributes
or methods of a component can use any component type of this design pattern and any other design
pattern for their definition. As can be seen later, this strict encapsulation is crucial for every kind of
refinement.
Components are instantiated at runtime. Alike classes, a component instance is associated with an im-
mutable identity and a state which is modelled by attributes of the component. Component instances
behave like instances of design patterns except for one property. These instances are associated with one
particular design pattern instance. In contrast to object oriented classes, the instantiation of a design
pattern conceptually opens a new space which is exclusively reserved for component instances whose
components are defined inside that design pattern. Considered from this point of view, there is a strong
dependency relationship between the design pattern instance and the contained component instances.
It can even be said that a design pattern instance contains component instances.

Attributes — Design patterns also have attributes. These attributes are classified into internal and external
attributes. Internal attributes are of a component type whereas external attributes refer to any basic
or design pattern type. The reason for this distinction lies in the fact that it is not allowed to access
internal attributes from outside the design pattern, since the components of the design pattern are
encapsulated by the design pattern.

Methods — Methods of design patterns are used to implement its higher behavior. These methods are
also selfish, i.e. they are invoked using a design pattern instance. Alike attributes, methods of a design
pattern can also be classified into internal and external methods depending on the parameter and return
types.

O

Example 2.6 Figure 2.5 depicts the design pattern List implementing a usual linked list. The design
pattern itself is surrounded by a frame symbolizing the encapsulation of its components. The design pattern
contains two components: [tem and ListComp. ListComp implements a linked list of Item elements. It
contains an attributes first and current in order for being able to navigate in the list. Additionally, it
provides methods like add, delete or rewind which serve an obvious purpose. Item contains an attribute
next which points to the next element in the list.

15

List

. first, current next
ListComp | Item
add(ltem) setNext(Item)
delete
A
theListComp
make

Figure 2.5: The design pattern List in OMT-like notation.

The design pattern List itself contains an (internal) design pattern attribute theListComp to hold an instance
of the component ListComp. The external function make is used as a constructor of the design pattern.
O

The definition of a set of attributes is normally used to model the state of a class instance in the object
oriented world. An attribute of a class has a type and for an instance of that class it is associated with the
identity or a value of that type. The current state of a class instance is determined by the current state of
all attributes. The current state of a design pattern instance, however, is determined by the current state of
the attributes together with the state of all current component instances contained by that design pattern
instance.

The associations of identites with states for a system of design patterns and components are described by
an environment. One special environment represents the state of the system, the set of all possible environ-
ments represents every possible state of the system. The state of the system can be compared to the state
of a single design pattern instance. The system contains instances of design patterns, whereas the design
pattern in turn contains instances of components.

A design pattern oriented program is a system of design patterns of the above form. It can be executed
in the PatternModel by the instantiation of a specified top design pattern and the following execution of a
designated main method of that design pattern.

design patterns can be considered as generalization of a class. In particular, a class can be considered
as design pattern without components. Even the refinement relation between two design patterns without
components behaves equal to the subtype relation between classes in the object oriented programming model.

As one can see, there are many similarities to object-oriented concepts. However, they have to be ex-
tended and adapted in order to describe the semantics of PP.

2.3.2 Implementations, locations, levels and visible elements

Beside its data definition part, PP also integrates a command language for the implementation of design
pattern- and component methods. This follows the idea of commands in imperative object oriented languages
applied to the design pattern oriented world. A command is executed in an environment transforming the
current state of the system to a new one. In this way, a command can implement a method which is then
called method implementation.

16

Due to the encapsulation of components by design patterns, it is necessary to define and to execute
commands dependent on the location where this command is used. A location can be a design pattern or a
component inside a design pattern or the global location or global level. Tt is said that a component method
implementation of a method contained by component C' is executed in C, analogously a design pattern
method implementation of a method contained by design pattern P is executed in P.

The location of a method implementation respectively a command induces wvisible components, design
patterns and methods that can be accessed by the command. All other elements are invisible and can
therefore not be accessed. The definition of a visible elements is of importance for type safety. The rules for
the definition of elements that are visible from a particular level can be summarized as follows.

Definition 2.7 visible elements
The following elements of PP are visible from the global level:

e all design patterns

e all attributes and methods of design pattern which only use design pattern types or basic type in their
definition

The following elements of PP are visible from a design pattern P:
e all elements that are visible from the global level,
e all components of P
e all attributes and methods of all components of P,
o all attributes and methods of P
The following elements of PP are visible from a component C inside a design pattern P:
e all elements that are visible from the design pattern P,

O

The above definition of visible elements considers three levels of nesting: the global level (the same as
the global location), the level of all design patterns and the level of all components C inside design patterns.
However, the theoretical framework presented in the following chapters can deal with design patterns that
have an arbitrary depth of nesting. In this context, design patterns and components are treated in an orthog-
onal way, i.e. design patterns can contain components, components in turn can contain other components
and so on. Then, there is no need for a distinction between a design pattern and a component. Related
concepts (including the definition of the visibilty of elements) that are briefly introduced in this section, have
to be generalized in order to support this orthogonal nesting of components. Since this chapter is intended
to address programming related issues in PP which only supports three levels of nesting, only these three
levels are considered at this point.

The external part of a design pattern is defined as that part of the design pattern which is visible from
the global level. The internal part of a design pattern is defined as that part of the design pattern which is
not visible from the global level.

Considered from outside a design pattern, i.e. from the global level or from a different design pattern,
its internal part and especially its components are not visible. Therefore, a design pattern behaves like a
normal class with attributes (its external design pattern attributes) and methods (its external design pattern
methods).

17

The design pattern construct in PP serves the purpose of static encapsulation of the components. Beside
this, a design pattern in PP also represents a meta level for its components. For instance, static attributes®in
components can be modelled by design pattern attributes. A static attribute does not depend on any particu-
lar component instance, but on the component itself. Since component instances are considered with respect
to a corresponding design pattern, the design pattern instance itself can also store this static attribute of a
component in a normal attribute of the design pattern. In this way, there is no need for static attributes
in this setting. A design pattern instance could additionally even hold type information about its components.

A design pattern can be pictured as meta level for its components. But, are there any higher meta levels?
It is imaginable to implemenent a design pattern as a component of another design pattern. In this way, a
higher meta level, i.e. a meta level for the meta level, can be found. It can be continued doing so which
yields to even higher levels. The PatternModel supports this feature, however, due to complexity reasons,
PP does not make use of it.

Example 2.8 The excerpt shown in figure 2.6 implements the design pattern List in PP. The whole imple-
mentation is presented in appendix C.1.
The meaning of the constructs should be obvious. A design pattern List is defined. Inside List, there are two
components Item and ListComp as well as the design pattern attribute theListComp and the design pattern
method make defined. The component Item in turn defines an attribute next together with some auxiliary
methods on component level. The component ListComp declares and implements the usual methods and
attributes for handling the List.
The design pattern List itself contains an (internal) attribute theList to hold an instance of the component
ListComp. The external function make is used as a constructor of the design pattern. It creates an instance of
ListComp with an associated initial state and assigns its identity to theList. For this purpose, the command
create List is executed with the implicitly passed parameter self. The newly created component instance is
then created inside the design pattern instance.

O

2.3.3 Refinements

The design pattern List in example 2.8 is not designed for instantiation but for reuse. Altough, it can be
instantiated by an appropriate command like create List, an instance of List would not be able to do any-
thing since the components are not accessable from the outside and there is only the visible make constructor.

However, it is not intended that List is used in this way. Applying the notion of refinements intoduced in
this section, it will be possible to reuse and specialize this implementation of a linked list. The result of this
refinement process is then bound to a specific application, e.g. a list dealing with string items. A hypothetic
design pattern StringList could then provide all necessary design pattern methods to access the strings of
the list. In contrast to the design pattern List which is very abstract, the instantiation of StringList is very
useful in a situation when a e.g. temporary StringList is needed.

Design patterns can be implemented in PP from scratch. In most cases, however, the developer wants
to reuse already implemented design pattern. In PP, this aim can be achieved using the mechanism of
refinement.

6The concept of static attributes (also called class attributes)is well-known in the object oriented world. A static attribute
is an attribute that is instantiated once per class. In this way, all instances of that class share this attribute. The notion of
static attributes can easily be applied to components.

18

In PP, a refinement is supported as construct in order to describe an operator that refines a (source)
design pattern into a (refined) design pattern. Then, the source design pattern is in a refinement relation to

design pattern List
components
component Item
attributes
next : Item

methods
setNext(anltem : Item) returns Item

method implementations
setNext(anltem : Item) returns Item is

end
end component

component ListComp
uses components
Ttem

attributes
first : Item,
current : Item

methods
add(anltem : Item) returns ListComp,
delete returns ListComp,

method implementations
add(anltem : Item) returns ListComp is
local

templtem: Item

do

if self.isEmpty

then
self.first := anltem;
self.rewind

else
templtem := self.current;
self.current := anltem;
anltem.setNext(templtem.next);
templtem.setNext(anltem);
self

end

end,

end component

attributes
theListComp : ListComp

methods
make returns List

method implementations
make returns List
do
self.theListComp := create List::ListComp
end

end design pattern

Figure 2.6: Implementation of the design pattern List in PP.

the refined design pattern. The refinement relation is defined as follows.

Definition 2.9 refinement relation between design pattern
A (source) design pattern is in a refinement relation to a (refined) design pattern iff

1.

each component of the source design pattern is injectively refined into a component of the refined
design pattern using the notion of generalized inheritance (cf. object oriented relations in section 2.1
and [3]),

. the object oriented component structure of the source design pattern is preserved in the refined design
pattern,

the internal part of the source design pattern is refined into the internal part of the refined design
pattern using the notion of generalized inheritance,

. the external part of the refined design pattern subtypes the external part of the source design pattern.

O

The above definition describes the essence of a refinement from a model-theoretical perspective. The
refinement operator in PP which is based on program transformations comprising renamings of components,
methods, etc. induces a specialized refinement relation.

In PP, the refine construct allows to specify the refinement on the design pattern level, whereas the
recast construct (cf. appendix A) which as part of the component definition is used to specify the refinement
on the component level. As implicated in definition 2.9, a refinement operator must be able to transform
the components, design pattern methods and attributes of the source design pattern into the refined design
pattern. This includes the possibility to rename the components, their methods and attributes as well as
the internal design pattern methods and attributes”. The refinement used by PP translates implementations
of methods of the source design pattern into the context of the refined design pattern with respect to the
renamings specified by the refine and recast constructs.

In the refined design pattern, the components of the source design pattern play their original role in the
refined environment. They can comprise additional functionality in form of new and reimplemented meth-
ods, but their basic behaviour is inherited from the source design pattern. For this purpose, it is important
that all components of the source design pattern participate in the refinement and that existing relations
between components still hold between their refined counterparts in the refined design pattern.

Beside the mentioned renamings, a refinement in PP also allows to reimplement component methods
and design pattern methods of the source design pattern. The whole refinement takes place on the level of
the language. This implies that e.g. the translation of an implementation of a method in the source design
pattern which calls a method that is reimplemented in the refinement process will then call the reimple-
mented method. By this approach and due to the fact that a refinement preserves the component structure
(cf. definition 2.9) of the source design pattern, components can be extended and modified without breaking
the component structure which is essential for the reuse of whole component structures. Object oriented
programming languages do not support this kind of reuse as mentioned in section 2.2.2.

It is possible to refine from more than one source design pattern. In a complex case, components can be
band together in the refined design pattern. Methods of these components can have the same name and sig-
nature. The same conflict can happen on the design pattern level. Therefore, a select statement is provided
by PP which can be used to select the implementation of a method from one of the source design patterns.
Since the selection of method implementations of components takes place in the component definitions, it
is necessary to label the refinement constructs in order to distinguish between them outside the refinement.
Example 2.10 shows the usage of the refine construct.

In the context of other design patterns or their components, the refined design pattern behaves like a
subclass of the source design pattern. This also means that design pattern instances behave polymorphic
and that the substitution principle can be applied to instances of design patterns. In this way, the design
pattern instances are treated like class instances in object oriented systems. This fact is of importance, since
the PatternModel is designed to extend the object oriented programming model.

The substitution principle in the PatternModel relies on the fact, that components of design patterns are
invisible from the outside. Otherwise, methods of components of a design pattern could be accessed from
other design patterns which would lead to problems of type-safety since these methods do not necessarily
have the same name nor take compatible parameters in refinements of that design pattern.

"TExternal methods and attributes can not be renamed due to the fourth item in definition 2.9

20

List

. first, current next
ListComp | [tem

add(ltem) setNext(Item)
delete

theListComp <\2

make \)
\ 1 (

Composite (/
Y 2
Compc@ent] next

operation
add(Component)
delete

N

first,
Leaf CompositeComp] current
operation operation
add(Component)
delete
[
theCompositeComp

make

Figure 2.7: The refinement of design patterns: ListRef refining from List to Composite

Example 2.10 Figure 2.8 shows the implemention of the design pattern Composite in PP. For this purpose,
the design pattern List (cf. example 2.8 and appendix C.1) and the design pattern Subtyping (cf. appendix
C.2) are reused by two refinements. Figure 2.3 depicts the refinement ListRef refining from List to Composite
graphically. The inheritance relation between the components of the design patterns is pictured by wavy
lines.

The design pattern Composite basically consists of three components: Component® together with the sub-
components Leaf and CompositeComp. Component solely serves the purpose to provide a common in-
terface. The components Leaf and CompositeComp implement their desired behaviour by component
methods. Leaf represents a sample element whereas the CompositeComp is a container of components.
All methods declared for Component can also be invoked on Leaf and CompositeComp. Leaf provides a
certain functionality, CompositeComp, however, delegates the method calls to all contained elements.

It is easy to see that the design pattern Composite can perfectly reuse the functionality of the design pat-
tern List. For that purpose, the components Item and ListComp in List are refined into Component and
Composite in Composite using the refinement labelled ListRef. Besides, the design pattern attribute the-
ListComp is renamed into theCompositeComp.

In order to make the examples a little more complex, the subtype relation between e.g. Component and

8Unfortunately, this name clash could not be avoided.

21

design pattern Composite

refinements
SubtypingLeafRef refines Subtyping method implementations
refine operation returns Component is do self end,

Parent into Component,
Child into Leaf
end refinement,

end component

component Leaf
SubtypingCompositeRef refines Subtyping

refine
Parent into Component,
o) end component
Child into CompositeComp
end refinement, component CompositeComp

methods

ListRef refines List operation returns CompositeComp

refine

Item into Component, method implementations

ListComp into CompositeComp operation returns CompositeCom is
do

rename by from

theListComp — theCompositeComp

self.rewind;
end refinement

self.current.operation

components until
component Component (self.next).isVoid
methods loop
operation returns Component, self.current.operation
add(anltem : Component) end
returns Component, end

end component
delete returns Component,

end design pattern

Figure 2.8: Implementation of the design pattern List in PP.

Leaf are refined from the design pattern Subtyping in the refinements SubtypingLeafRef respectively Sub-
typingCompositeRef. However, this could also be achieved on the fly without such a refinement.
The design pattern GraphicComposite represents one special application of the design pattern Composite. It

is implemented in appendix C.4.
O

2.3.4 Reuse vs. Instantiation of design patterns

According to quotation 2.1, a design pattern is designated for reuse purposes only. This corresponds to
refinements in PP. A design pattern in PP can also be instantiated which seems to contradict this principle
in part since instantiation stands for the active use of a design pattern itself. It should be used only in
later applications whose objects can be instantiated then. In order to unify these partially contrary ideas,
the notion of the design pattern is extended as follows. Roughly speaking, everything in PP is a design
pattern. A design pattern in the sense of [8] can still be represented by a design pattern in PP, but even
an application of such a design pattern is now a design pattern in PP. Therefore, a design pattern in PP

22

reusability

\ usege
\
\
\
\
\
' : :
abstract Y : _ instantiation
\ . -
\ .
\ .
\@é \ .
O \ .
& .
L
& L
® .
: v
concrete Y

Figure 2.9: The usage of a design pattern: relations between reusability, instantiation and the level of
abstraction of design patterns

integrates both ideas: refinement and instantiation. There is no separation between design patterns and
applications. Abstract design patterns are refined and combined as needed, eventually leading to a design
pattern which actually represents the application in the sense of [8].

Figure 2.9 shows the relations between the reusability, instantiation and the level of abstraction of de-
sign patterns. Design patterns that are abstract (e.g. GoF design patterns) are usually not suited for
instantiation but ideal for reuse purposes. The more specialized a design pattern gets the more useful an
instantiation of this design pattern can be. However, at the same time, this design pattern is more difficult
to reuse. At the opposite extrem, i.e. a very specialized design pattern, the design pattern can hardly be
reused. At this stage, an instantiation makes the most sense just because the design pattern is so specialized.

2.4 Related work

The programming language Java uses the concept of nested classes. A class can be defined within an embrac-
ing class. The nesting mechanism is not limited to three levels, so that there can be further classes nested
in this already nested class and so on. When a class in Java is subtyped by a subclass, all nested classes of
the superclass are automatically nested classes of the subclass. This implies that it is impossible to refine
the nested classes themselves. Therefore, the refinement operator on design patterns as introduced in this
thesis, works in a more general way since it allows to extend the components when a design pattern is refined.

Since the refinement process itself is very complex, PP as a prototype of a design pattern oriented pro-
gramming only uses the mentioned three levels (global level, design pattern level, component level). From
this point of view, the concept of nested classes is more orthogonal than the introduced approach in PP.
However, a orthogonal nesting’in PP would make refinements and their consequences on command transla-

23

tions, etc. difficult to handle. Because of this reason, only the basic theoretical framework regarding abstract
datatypes in chapter 3 and regarding object algebras in chapter 5 includes the facility to nest design pattern
and components to an arbitrary depth.

From the designer’s perspective, it is questionable if it is a limitation to have only the global level, design
pattern level and the component level. In most cases, a deeper nesting would affect important properties of
programming (e.g. traceablility and maintainability) in a negative way. Besides, refinements would become
programming constructs which would be almost impossible to deal with.

2.5 Remarks and outlook

In this chapter, basic notions of the design pattern oriented programming model and PP have been intro-
duced. This will help understanding the ideas and concepts in the subsequent chapters, which are more
theoretical in nature. However, this introduction does not cover design pattern oriented strategies in soft-
ware engineering. For this purpose, the reader is referred to [6] which captures a more general introduction
into design pattern oriented programming techniques. Additionally, the design pattern oriented imperative
programming language PAL is introduced using the same concepts as PP.

Design patterns will be introduced formally in chapter 4. For this purpose, in chapter 3, a framework of
algebraic specification techniques will be presented. The obtained results will then be applied in chapter 5
and 6 in order to define the syntax and semantics of PP.

9In this case, PP would have to provide a unified construct for the definition of both design patterns and components.
Besides, then it would have to be possible to nest these statements as needed.

24

Chapter 3

Basic notions of algebraic
specifications and abstract data types

This chapter defines basic notions of algebraic specifications and abstract data types based on [5]. However,
they have been adapted in order to support design pattern oriented features which are crucial for the
description of the PatternModel and of the design pattern oriented language PP. The PatternModel itself
has to be conceived as entirety of all concepts and notions presented in this and the subsequent chapters.

3.1 Partially ordered sets, dependency sets

A partially ordered set is used to model a subclass-relationship between sorts in signatures. It will be used
later to impose a subset relation on carrier sets of these sorts.

Definition 3.1 partially ordered set
A pair (5, <) is called partiallay ordered set iff S is a set and <C S x S is a partial ordering, i.e. < is reflexive,
transitive and antisymmetric.
The ordering < is extended to strings of elements with equal length, i.e. s1...s, <t1...%, iff s; <t; for
alli=1,....n.
O

A dependency set is used to model a notion of dependency relationship between elements. It will be
used in the sequel, when pattern specifications are introduced. A sort representing a component of a design
pattern will then depend on a sort representing the corresponding design pattern. In this way, the complex
interrelations between design patterns and components are handled at the lowest level. As pointed out in
section 2.3.2, this notion of a dependency set is more general than it is actually needed in PP since it is not
restricted to three levels of nesting. It is introduced in this way, since the presented framework should be as
general as possible in order to provide a fundament for later considerations.

An element s € S is in relation s’ I s with some other element s’ € S if s depends on s’. The relation IF
has to satisfy the following properties:

e an element in S is never in relation with itself,
e an element in S can only depend on one other element in S,

e directed circles in the dependency relation are excluded.

25

Definition 3.2 dependency set
A pair (S,IF) is called dependency setiff S is a set and IFC S x S satisfies the following properties

1. Vsl,SQ holds that s IF s9 = s 75 S92,
2. Vs1,82,5 € S holds that s1 IF s A so IF s = s1 = 5.
3. the transitive and reflexive closure of IF is antisymmetric.

The transitive closure of I is denoted by IFF, the transitive and reflexive closure is denoted by IF*.

A dependency set is called complete if there is an L€ S with LIF* s for all s € S. This element L is then
called the global location or the global level. The complete closure of a dependency set (S,IF) is defined by
(S°,1F°) =ger (SU L,IFU{(L,s") :As € S with s I s'}).

O

The term depend is often used in conjunction with direct or indirect. Given a dependency set S, an
element s’ € S depends directly on an element s € S iff s IF s’. s’ depends indirectly on s iff s IF* s’ and

sl s’

For a given subset of S, the following function returns the sort s, if all elements in this subset depend
directly on s. Otherwise the function is undefined. If the elements in S do not depend on any element, the
function returns L. It is also said, that the element s encapsulates the elements in S.

Definition 3.3 encapsulating element of a set of elements
Let (S,IF) be a dependency set. For a finite set S C S, a function 1} is defined by:

fNs,by: 9fin (S) = S°
" (S) = {s,ifsESanst’ES slke s
(sr) (8) =defs

undefined otherwise.
The index (S, IFF) is dropped if the context is clear. O

A dependency set can be visualized as a set of trees from the perspective of graph theory. The following

definition of wisibility of elements allows the selection of a wvisible subgraph based on a certain element in a
dependence set. Using the dependency relation IF, it is possible to define sets based on S which represent
those elements in S which are wvisible from a particular element in the following way.
Every element ¢ can encapsulate other elements. These dependent elements are only considered to be
meaningful together with ¢. Therefore, e.g. directly dependent elements of an element ¢ € S should only
be visible from other dependent elements of ¢. The following definition introduces wvisibility of elements in a
formal way. Later, it will be used to define the visibility of sorts in signatures.

Definition 3.4 set of visible elements
Let (S,IF) be a dependency set. The set of visible elements S¢ from a ¢ € S° is inductively defined by
1. s eScif s’ € Sand clk° s,
2. 8 CS¢ifs' € S°and s' IF° .
An element s’ € S is visible from an element ¢ € S° iff s’ € S¢. Note that the element L is not contained in
any set of visible elements.

Furthermore, R (S¢) will denote the set of elements which are visible form ¢ but not from c. It is formally
defined by

e\ sn({e}h) i
R (S°) :def{ S\S ,ife#L

undefined otherwise.

26

a) b)
S3

Figure 3.1: Visualization of visible elements considered from s; (a) and sio (D).

Example 3.5 Let (S,IF) be a dependency set where the components are defined as follows.

S —def {Sla327837841857363877383397810}
I =def {(31732)a(32533)5(81534)7(35a56)a(56537)5(s5788)5(38a39)v(88’310)}

Figure 3.1 visualizes the set of visible elements in a dependency set considered from the perspective of s; (a)
and s10 (b). Note that the element L is not part of the dependency set itself. However, often the complete
closure of a dependency set is used in order to obtain a more homogeneous environment for a particular
consideration.

O

In order to avoid problems when both a partially ordered set and a dependency set are defined on the same
basic set, the following notion of compatibility between these sets is introduced. Compatibility requires that
whenever two elements in S are comparable by <, they also have to be in the same encapsulating element
in IF. This implies that if two elements in S are comparable by IF then they can not be compared by <.

Definition 3.6 compatible sets (partially ordered set and dependency set)
A partially ordered set (S, <) is compatible with a dependency set (S, IF) iff Vs, so € S holds that if s; < s9
then 1} ({s1, s2}) is defined.

(I

Partially ordered sets as well as dependency sets can have subsets'. However, in most cases, a simple
subset notion is not sufficient. Therefore, the notion of a closed component also considers the relations <
respectively IF in such a set.

Mn fact, partially ordered sets as well as dependency sets are pairs or tuples in the mathematical sense. In most cases,
however, it is more convenient to think of these pairs as sets. Then, subrelations etc. can be defined on the components of the
tuple

27

Definition 3.7 closed component
A pair (8', R') is called closed component in a pair (S,R) iff S’ C S,R' C Randr R s implies eitherr R' s
orr,s €S forallr,s e S.

(I

3.2 Signatures, Y-algebras

In this thesis, X-algebras will be used for the description of the denotational semantics of PP. A Y-algebras
can be conceived as a set of what is called carrier sets together with operations defined on them. Besides,
they have to satisfy a certain form which can be described by (order-sorted) signatures.

Definition 3.8 (order-sorted) signature (cf. [5])
An (order-sorted) signature X = (S, <, Ik, F, class) consists of

1. a partially ordered set of sorts (5, <),
2. a dependency set of sorts (S, IF), such that < is compatible with IF,

3. an S* x S indexed family F = (F 5)
tions

wes+ scs Of operation identifiers f satisfying the following condi-

o Vf € Fy, . s, s holds that there is a ¢ € S° such that {s1,...,s,,5} € S based on (S, IF).
o if f € Fy, s, N Fy, 5, and w1 < wo then s1 < so or there is no ¢ € S° such that {s1,s:} € S°
based on (S, IF).
4. a sort class € S.

We define (S, <, Ik, F, class) C (S', <", IFH, F' class’) iff S C S, <C<'|IFCIH and F C F'.

The set of visible sorts of a sort ¢ in a signature ¥ is defined by the set of visible elements of ¢ in the
dependency set (S, IF). O

In the sequel, signatures will be used to describe the structure of ADTs. Each such ADT, corresponding
to modules on the programming level, can then be associated with one characteristic sort in X.. This sort is
called class sort and an explicit part of X.

In contrast to signatures and X-algebras as defined in [5], signatures in this approach integrate a depen-
dency set of sorts into the signature. Additionally, the dependency set of sorts requires operation symbols
to be of a certain form. Depending on the visibility of sorts, several operations are ruled out, since they
have an unintuitive combination of parameter- and result sorts and will therefore not be considered in the
sequel. The first item requires that there is a sort for an operation symbol such that every parameter- and
return sort is visible from that sort. The second item is a relaxation of the monotonicity-condition (cf. [5]).
In this approach, the condition has only to be met if both operation symbols are visible from one sort at
the same time. This resolves ambiguity problems in the interpretation of terms later in this chapter and of
commands later in this thesis.

For convenience reasons the following notations for components of signatures are introduced.

Notation 3.9 notations for components of signatures
o f€F, s, s wilalso denoted by f : (s1,...,5,) — s and called operation symbol.

e f() — sis also denoted by f :— s and called constant.

28

e given a signature ¥ = (S, <, Ik, F class), sorts (X),<y,lFy,opns (X) and ClassSort (¥) will denote
the components of ¥. Moreover,
name (f : ($1,...,8n) = 8) =gef f, names (F') =gy {name (f) : f € F} and
sorts (f 1 (s1,...,8n) = 8) =des {51,---,5n,5}.

O

For most applications, it is necessary that a signature satisfies the additional properties of coherence.
Coherence implies regularity which means that operation symbols can be associated with least sorts for their
parameters. Furthermore, in a coherent signature every sort can be associated with a maximum sort.

Definition 3.10 coherent, regular signature
A signature ¥ = (S, <, Ik, F class) is called coherent iff

1. it is regular, i.e. given wo,w; € S* with wg < wy and given f € F, s, there is a least w,s € S* x S
such that f € F, s and wg < w.

2. each sort s € S has a maximum in S, i.e. there is a sort maz (s) € S such that s < maz (s) and s < s’
implies s’ < max (s) for all s’ € S.

O

Algebras, in general, consist of carrier sets and functions on these carrier sets. In the case of partial
order-sorted Y-algebras, their structure is described by partial order-sorted signatures. Besides, certain
restrictions are imposed on the carrier sets and the functions itself. The notion partial order-sorted X-
algebra is formalized in the following way.

Definition 3.11 partial order-sorted X -algebra
Let ¥ = (S, <, IF, F, class) be a signature.

A (partial order-sorted) X-algebra A = ((As) consists of

A
sES (f31---sns)f:(sl,...,sn)—meF)
1. carrier sets A for all s € S such that s < ¢ implies A; C Ay,

2. partial functions f} | .+ Ag x...x Ay — A for all f: (s1,....s,) = s € F such that f :

(81,-38n) = 8, f:(t1,...,tn) >t € Fand t1...tn,t < 81...8y,,s implies
A _ A
fsl...sns |At1><---><At,, _ftl...t"tv

ie. fA , (a1,...,an) = f , i (a1,...,a,) or both sides are undefined for all a; € A, ,i=1,...,n.

The class of all Y-algebras is denoted by Alg(X). The sort index of functions is omitted if the context is

clear.
a

3.3 Visibility of operations

Using the visibility of sorts, a notion of wvisibility of operation symbols can be defined. Both, the visibility
of sorts and operation symbols, are essential for the context-dependent definition and the interpretation of
terms. The subsequent properties and definitions provide a basic framework for encapsulation concepts in a
design pattern oriented programming model.

An operation symbol is visible if all parameter sorts and the result sort are visible. This ensures that
operation symbols are hidden if they use hidden sorts.

29

Definition 3.12 set of visible operation symbols
Let ¥ = (S, <, Ik, F class) be a coherent signature. The set of visible operation sybols F¢ of a sort c € S° is
defined by

c c c
'7: —def (fsl...s",s) Where fsl...s",s =def FSI---STHS'

81...8n,8€S8°

Furthermore, R (F¢) will denote the set of operation symbols that are visible form ¢ but not from the
encapsulating sort of ¢. It is formally defined by

o]:C\]_‘ﬂ({c}) ife#L
R (F) —def{ FiL otherwise.

The following lemma guaranties that all sets Fy, are also contained in F¢ | if ¢IF° ¢'.

...8n,8
Lemma 3.13 Let ¥ = (S, <, IF, F, class) be a signature, ¢ IF° ¢/. Then the following holds.

1. Vs1,...,8,,8 € 8¢ holds that F¢,_, ,=FC
2. FeC F°,
3. Vs o0 ER (}'C’) there is 1o $1,...8p,s with s} ...s)s" < s1...5p5.

Proof

1. (a) C: Let f(s1,...,8,) = s € F¢. Then s1,...,8p,5 € 8¢ by the definition of visible sorts of ¢’.
Therefore, f: (s1,...,sn) = s € F°. Hence, Fg, , CFg s s

(b) Dt s1,...,8,,8 € S by the definition of visible sorts of ¢’. By the definition of visible operation

symbols can be implied that an f (s1,...,8,) = s € F< must also be in F¢. Hence, F5, 5 2
fscl...sn,s‘

2. Follows immediately by the definition of visible sorts.

3. Follows by the fact that (S, <) and (S,IF) are compatible.

3.4 Terms and their interpretation

In the preceeding sections, the notion of the ¥-algebra was introduced. For most applications, a mechanism
is needed that enables the developer to specify a class of algebras which satisfy required properties. In
this approach, terms which base on a given signature X are interpreted in the environment of a particular
Y-algebra. The term interpretation itself is part of a calculus which is eventually used to determine if that
3-algebra meets the requirements.

This section extends the notions term and term interpretation in order to handle dependency sets. This
facility is essential for design pattern oriented considerations in the sequel. It is also important to point out
that the adaptions of these well-known notions do not conflict with any concepts that base on terms and
their interpretation in the usual sense, so that these concepts can still be applied.

30

A term is defined based on a given signature ¥ and a given set X of disjoint typed variables. Unlike
terms as defined in [5], terms in this thesis also depend on sort ¢ which is also called location. This sort
determines the set of (visible) sorts and (visible) operations that can be used in a term.

Furthermore, every term belongs to a certain sort which specifies its result type. This is of importance,
since e.g. operations require their parameters to be of a certain type. In order to guarantee type-safety of
the term interpretation, possible terms for a parameter are restricted to terms that are associated with the
corresponding sort.

Definition 3.14 term
Let ¥ = (S,<,IF, F,class) be a signature, ¢ € S° and X a S®indexed family of disjoint sets of variables.
The S¢-indexed family T (2, X) of terms over ¥ at a location ¢ with variables X is inductively defined by

1. feT(Z,X); forall f:—se Fe,

2. € T(Z,X); for all z € X,

3. [ty tn) €T (B, X); forall f:(s1,...,8,) 2 s€Ft; €T (X, X); ,i=1,...,n,
4. T(S,X)° CT(S,X)if r <s.

T (X) =ges T (Z,0)° denotes the set of ground terms.
a

Although terms always have to be considered in conjunction with one single location, it is easy to see
that there are interrelations between the sets of terms of different locations if these locations are correlated
via the dependency set of sorts. Every term at a particular location is also valid in all dependent locations.
This property can be formalized as follows.

Fact 3.15 Let ¥ = (5, <, I, F, class) be a signature, ¢ IF° ¢/, s € S and X a S°-indexed family of disjoint
sets of variables. Then the following holds.

1. T(S,X)5 C T (2, X)),
2. T(5,X)°CT(Z,X).
Proof

1. by structural induction over T' (X, X);. Let s € 8¢, t € T (2, X);. The following cases have to be
considered:

(a) t = f, then f:— r € F° and r < 5. By lemma 3.13 follows that f :— r € F¢. By the definition
of terms follows that t € T (3, X)zl.

(b) t =z, then x € X,. By the definition of visible sorts and the definition of terms can immediately
implied that ¢ € T (3, X)° .

(c) t = f(tr,.-. tn), then f: (s1,...,sp) =7 € F,r <sandt; € T(X,X); ,i=1,...,n. By
lemma 3.13 follows that f: (s1,...,8,) = T € Fe By structural induction hypothesis holds that
t; € T (,X)C . By the definition of terms follows that ¢ € T (£, X)° .

2. follows by 1.

31

Terms of a signature ¥ can be interpreted in a particular ¥-algebra A. To this end, each variable z
of sort s contained by the variable set X is assigned to a element of the carrier set As;. Beginning from
this starting point, terms are interpreted according to their structure following a innermost-to-outermost
strategy eventually leading to a result value of the corresponding type. E.g. a function call f (¢1,...,t,)
is interpreted by first interpreting the terms representing the parameters. The results are then applied to
the function f4 in order to obtain a result value for this function call. In this way, the interpretation of
terms can also be conceived as the semantics of the syntactic construct of a term in the semantic space of a
Y-algebra.

Definition 3.16 assignment, interpretation

Let ¥ = (5,<,IF F,class) be a coherent signature, ¢ € S°, X a S¢indexed family of disjoint sets of
variables and A € Alg(¥). An assignment from X to A is a family of functions v = (vs : X5 — A;)
The interpretation of terms at a location ¢ in A is described by a family of functions

()" = ((v°); : T (T, X); = 4,)

seSe

sES®e”

These functions are defined in the following way.

()5 (f) =des frA if f:m>reFs>r,

(0): (z) =gef vp (z) ifz € Xpys >

and if f: (ry,...,m) = 7 € F° s > r then

(W) s (f (t1s-- - tn)) =def

{ Fi e (O (B1) 5o, (09); (tn)) if (v°)). (t;) are defined for alli=1,...,n

undefined otherwise.

O

In the sequel, it will be assumed that these interpretation functions are well defined. Intuitively, a proof
for the well-definedness of the interpretation functions of terms over a signature X (S, <, Ik, F, class) at a

location ¢ could be founded on the proof in [5] for a signature X' = (SC, (g)lsc ,}'C)Q and on the fact that

this signature is coherent® (by lemma 3.13) if ¥ is coherent.

A term at a location is interpreted in all dependent locations of this particular location in the same way.
The following fact formalizes this property.

Fact 3.17 Let ¥ = (5, <, Ik, F,class) be a coherent signature, ¢ IF° ¢/ € S°, s € §¢, A € Alg(X). An
assignment from X to A is given as a family of functions v = (v, : Xy = A,),.g.. Then for a t, € T (X, X);
the following holds.

Proof Omitted. The idea behind the proof is to show by lemma 3.13 that the interpretation of terms is
defined on the same functions in A at both locations.

O

As afore mentioned in this section, a calculus can be founded on the interpretation of terms in order to
classify algebras according to their properties. One approach could be to use predicative logic in form of
well-formed formulas as introduced in [5]. Another approach is to require that the carrier sets of the algebras
to be term-generated. This means that each element of a carrier set can be reached by the interpretation of

2This signature is only a valid signature in [5]
3 Again, this notion of coherence is defined in [5].

32

a term. Constraints can additionally be used to restrict the form a term, e.g. it can be required that only a
certain subset of all operations * of the signature may be used in a term.

Definition 3.18 term generation, constraint

Let ¥ = (S, <, IF, F,class) be a coherent signature. Let A € Alg(X),S C sorts(X),F C (X). The algebra
A is reachable on S with F iff for all s € S and a € A, there is a location ¢ € S with s € §° and a term
teT (Y, (Xs)yes), and an assignment v such that (v°); (t) = a,

where X' = (sorts (¥), <y,lFs, F,ClassSort (X)) and S' = §¢ — {s' : ' >5 r for some r € S}.

If A is reachable on sorts (X) with opns (X) then A is called term-generated.

Let s € sorts(X). The algebra A is generated on s by its subsorts iff for all a € A there is some
r € sorts (X),r <x s, such that a € A,.

We call a pair (S, F'), or a sort s as above, a constraint with respect to ¥. The operations in F' are called
constructors. Given a set I of constraints with respect to ¥, a X-algebra A satisfies I, denoted by A = 1, iff
A is reachable on S with F for all (S, F) € I and A is generated on s by its subsorts for all s € I.

O

Notation 3.19 notations for commonly used sets

e SORT, pfin (OPN), ppin (CONSTRAINT), SIG, TERM denote the sets of sorts, finite subsets of
operation symbols and constraints, finite coherent signatures and terms.

e Moreover, it will be assumed in the sequel that there is an element S in every S C SORT.

e SPEC denotes the set of specifications. It is formally defined by
SPEC =45 {(£,C) : X € SIG,C C Alg (%)}

The functions Sig and Mod are defined for being able to access the components of SPEC. They are
defined by

Sig ((2,0)) =aes %,
Mod ((£,0)) =e C.

3.5 Operators on signatures

The aim of this section is to introduce operators on signatures which will be used in subsequent chapters as
an efficient way for their manipulation. Some of these operators are of a rather general use whereas e.g. the
need for a hierarchical construction of signatures is strongly related to the definition of the semantics of PP.

A signature morphism is basically a pair of functions which renames the sorts and operation symbols of
a signature. It is defined as follows.

Definition 3.20 signature morphism
A signature morphism o = (0g,0p) refining a sort s” € S consists of an injective partial function og on
sorts and an injective function oF on operation symbols such that the following holds.

4These operations are called constructors.

33

1. s" € dom (oF),

2. 05 and oy are compatible in the following sense: if op (f : (s1,...,5,) — So) is defined then it is equal

toop (f): (s1,...,s),) = s for some identifier op (f) where s} =g4.¢ s; or s} =gep 05 (s;) for s; = 5™

and s} =ges 05 (8;) otherwise.

3. name (op (f : (s1,...,80) = S0)) = name (op (f : (t1,...,t,) — to)) for all operation symbols
fio(st,eoy8n) = S0, f i (t1y... tn) = to-

The set of signature morphisms is denoted by SIGMORPH. If the context is clear, the indices S and F
are omitted.
O

A signature morphism can refine a sort s” which means that only dependent sorts of s" may be changed
by the morphism. Hence, terms in a non-dependent location of s” in the source signature rely on the same
sorts, since all dependent sorts of s” are hidden.

Definition 3.21 induced signature
A signature morphism o = (0g,0F) refining a sort s” € S and a signature ¥ = (S, <, Ik, F, class) € SIG
induce a signature o (£) = (S', <", IV, 0p (F), 05 (class)), where

S =ges {os(s) 8" IF* s}U{s"}

and o)(s) <'o(t)iff s<tor(s=o(s") and t = s") and o (s) (IF)° o (t) iff s IF° ¢ or (s =fis,r) ({s"}) and
t=s").

Proof that o (X) is a coherent signature is omitted.
d

It is important to understand why the refining sort s” is treated differently to all other sorts. Operation
symbols that use s” as a parameter sort or a result sort can be morphed in a hybrid way. This means that an
induced signature X' of the signature morphism ¢ and a signature ¥ can contain an operation symbol o (f)
in which some occurences of s" as parameter sort and/or result sort in f have been morphed into o (s")
whereas some occurences of s” in f remain unchanged in op (f). This property will be used in subsequent
chapters to model a current type when design patterns are refined. A current type can be used to refine
parameter sorts or result sorts in a dynamic way. However, in some cases, it is not desired or even not
type-safe, to morph each single occurence (co-variance).

Notation 3.22 If ¥ C dom (o) then we write o : ¥ — ¥’ for any signature o (X) C ¥’ and we write

o1 (X") = ¥. Moreover, in the sequel it is assumed that in signature morphisms holds o (s) = s if s” ¥+ s.
d

Example 3.23 Figure 3.2 depicts the sorts of two signatures ¥ and ¥’ and the morphing of sorts g which
is part of the signature morphism o : ¥ — ¥'. o refines s4 which causes s} < s4.
O

As a matter of fact, the composition of signature morphisms is not an operator on signatures but on
signature morphisms themselves. It is defined as the consecutive application of both participating signature
morphisms.

34

Figure 3.2: Morphism of sorts from sorts (X) to sorts (¥') refining s4.

Definition 3.24 composition of signature morphisms
The composition g9 0 g1 : X1 — X3 of two signature morphisms o1 : X1 — Y5 and o9 : X3 — X3 is defined
by

o _ o9 (01 (z)) if 01 (z) and o2 (07 (x)) are defined
92001 Zdef undefined otherwise

for all sort and operation symbols x.
O

The notion of the signature morphism is a convenient way for the manipulation of signatures. The notion
of the o-reduct as introduced below can be conceived as its inverse operation. Given a signature ¥’ and a
signature morphism o : ¥ — ¥', the o-reduct of ¥’ results in X.

Definition 3.25 o-reduct, X-reduct
Let 0 : ¥ — ¥’ be a signature morphism refining s", A € Alg(X'). The ¥-algebra A, is called a o-reduct
of A. It is defined by

(A|(,)s =dey Ao(s) for all s € sorts (%),
Als
o s 50 =def O (f)sA'l...s'"sg for all f:(s1,...5,) = S0 € opns (X)
where s} =ger 05 (8i) Or 8} =ges 8; if s, = s" or s, =4ey 05 (s;) otherwise.
If o is the identity on ¥, hence ¥ C ¥', we denote A, also by Az and call it X-reduct of A. For any class
C of Y'-algebras, C|, is defined by Cj, =gef {4}, : A€ C} C Alg(T).
O

35

The following definition provides operators for the intersection and the sum of two signatures as well as
the hierarchical construction of a signature based on a source signature (cf. [5] for details).

Definition 3.26 intersection (M), sum (+) of two signatures, hierarchical construction (&)
Let 31 = (Sl, <i,lkq, Fl,classl) , 29 = (SQ, <s,lFs, FQ,ClaSSQ) € SIG.

(81N S, <1 N <, Ik Niky, Fy N Fy,) if this signature is coherent

Yiny =def { undefined otherwise

In order to define the sum of two signatures, it is necessary to restrict the participating sets of operation
symbols Fy, F5> to be closed with respect to the ordering on sorts <;,<s. This notion guarantees that the
resulting signature is still coherent.

Two sets of operation symbols F; and F, are closed with respect to the ordering on sorts <;, <, iff whenever
f € (F1 U FQ)U]’S and f € (F1 U FQ)U]/’S; and there is some w, (Sl U S2)+ w, W (Sl U §2)+ w’ then wo <;
w,w" and f € (F;),, ., f € (Fi),, , for either i =1 or i = 2.

(S', <", I F' class') if (S',<',IH,F' class) € SIG and Fi, Fy are closed wrt. <j,<,

Ti+ X =def { undefined otherwise,

where (S, </, I, F', class') =qos (51 U Ss, (<1 U <o)t Ik Ulkg, 1 U F2,class2) .

Let ¥ = (S, <, Ik, Fclass) € SIG,s € SORT, s; € sorts (X), with s; #s,i=1,...,n,p€ SORTU L,p+#s
and ¢; € SORT,cj #5s,j=1,...,0.

Y@ (s,8 < {s1,...,sn},plFslE{er,...,co} , F') =ges

(S', <", I, FUF',s), if this is a coherent signature and 1} ({s1,...,s,}) is defined
undefined otherwise,

where

g — SU{s,ptU{eci,...,co}, if p#L

—def { Su{stU{er,...,co}, otherwise,

Slzdef (S U{(S,S),(8,81),...,(8,8n)}),

”_I:df { II-U{(va }U{(Svcl)v---v(svco)} ifp #J—
€ IFU{(s,c1),...,(s,¢0)}, otherwise.

O

Analogously to the notion of closed components in partially ordered sets and dependency sets, a notion
of a closed component is defined on signatures. Again, it ensures that a closed component in a signature X
does not break off relations in X.

Definition 3.27 closed components in SIG
We call ¥ C ¥ a closed component in ¥ iff (sorts(¥'),<’) is a closed component in (sorts (), <),
(sorts (¥'),IF') is a closed component in (sorts (X) ,IF) and X+ (sorts (X), <, Ik, opns (X) — opns (X') , class)
is defined.

d

Using the definition of visible sorts and visible operations on a given signature, a subsignature can be
defined which only consists of visible components.

36

Definition 3.28 wisible signature
Let ¥ = (S, <, Ik, F, class) be a signature. The wisible signature V¢ (X) of a sort ¢ € S° is defined by

(SC, (Djse > (F)se ,fc,class) , if class € S¢

S, otherwise.

Ve (Z) def {

3.6 Operators on specifications

In analogy to the operators on signatures as defined in the preceeding sections, this section will define
operators on specifications that which will be used in later chapters for the efficient handling of specifications

(ct. [5).

Definition 3.29 satisfiability of a specification
A specification sp € SPEC is called satisfiable iff Mod (sp) # 0.

a
Definition 3.30 class sort
Let sp € SPEC.
A function ClassSort is defined by:
ClassSort : SPEC — SORT
ClassSort (psp) =gef ClassSort (Sig (sp))
|

Applying the notion of the visible signature, it is possible to define the visible part of a specification
considered from a location c.

Definition 3.31 wvisible part
Let sp € SPEC and ¢ € sorts (Sig (sp))°.
A function wvisible is defined by:

visible : SPEC — SPEC

visible® (sp) =aes <vc (Sig (sp)) , Mod (sp),ye(s19(sp)) > .

Definition 3.32 sum(+) of two specifications

+: SPEC x SPEC — SPEC
(21,Ch) + (X2,Co) =gey

<Z] + 22, {A S Alg (El + EQ) : 14|Z1 eC A A\Eg S (Cz}> if 31 + X5 is defined
undefined otherwise.

37

The function Sum is defined as follows.
Sum: @pin (SPEC) = SPEC

Sum (C) =4y Y C.

CceC

3.7 Relations in SPEC

3.7.1 Object oriented relations

The following object oriented relations are used to model object oriented relations that can exist between
two specifications (cf. [5]).

Definition 3.33 the clientship, subclass, inheritance relation in SPEC
Let sp,sp’ € SPEC.

e Clientship:
sp is a client of server sp’ denoted by sp’ — sp, iff

1. Sig(sp’) C Sig(sp) and
2. MOd(Sp)‘Sig(sp,) g MOd(sp’).

o Inheritance:
sp is an heir of ancestor sp' via the signature morphism o denoted by sp’ ~= sp, iff

1. 0: Sig(sp') = Sig (sp) and
2. Mod (sp),, € Mod (sp')
o Subtyping:
sp is a subclass of superclass sp' denoted by sp < sp', iff

L. Sig (sp') C Sig (sp),
2. ClassSort (sp) < ClassSort (sp') in the ordering of Sig (sp) and
3. Mod (sp)g;q(spry C Mod (sp')

Definition 3.34 a generalized notion of inheritance
Let sp,sp’ € SPEC. spis a generalized heir of ancestor sp' via the signature morphism o with respect to a
relation ® iff

1. o: Sig(sp’) = Sig(sp) and
2. VA € Mod (sp) 3B € Mod (sp') with ® (A, ,B).

In order to support the construction of generalized heirs, a function based on the newly introduced relation
is defined:

simulates (sp) =qef (Sig(sp), { A€ Alg(Sig(sp)):
® (A, B) for B € Mod(sp)})

All presented relations are reflexive and transitive. Detailed proofs can be found in [5].

38

3.7.2 The dependency relation

In addition to the afore mentioned object oriented relations another new relation is introduced to model a
notion of dependency between two specifications. In chapter 4 the notion of a design pattern specification will
be introduced which in turn uses separate specifications to represent the components and the higher behaviour
of a design pattern. The dependency relation will then be used to describe the correlation between the
component specifications and the specification representing the higher behaviour. Basically, the dependency
relation requires the common part of both participating specifications to be identical and the class sort
of the dependent specification to be dependent on the class sort of the other specification. Formally, the
dependency relation is defined as follows.

Definition 3.35 dependency relation
A specification sp' depends on a specification sp, denoted by sp IF sp', iff

1. ClassSort (sp'),ClassSort (sp') € Sig (sp) N Sig (sp'),
2. ClassSort (sp') IF ClassSort (sp) in the ordering of Sig (sp) N Sig (sp'),

3. Mod (sp) Mod (sp')

|Sig(sp)NSig(sp’) — |Sig(sp)nSig(sp’) *

O

The following properties of the dependency relation are quite obvious. They are mentioned here because
they will be used in the subsequent sections tacitly.

Fact 3.36 properties of the dependency relation

1. the dependency relation is not reflexive,
2. the dependency relation is not transitive.

Proof follows by definition 3.35.
O

The presented notions will be widely used in the sequel. Therefore, this chapter represents a framework
for later considerations.

39

Chapter 4

A design pattern specification
framework

In chapter 2, a way was discussed to describe design patterns informally. However, due to the nature of the
listed items, such descriptions are often quite vague and ambiguities are not always avoidable. Beside this,
soundness and completeness can not be taken for granted.

The notion of a design pattern will be introduced formally in this chapter. Its definition is entirely based
on the concepts of algebraic specifications as described in chapter 3. In this way, problems like those men-
tioned above can be overcome. Additionally, this formal approach makes it possible to deduce important
properties and to prove that certain requirements on the model are met.

First of all, the notion of a design pattern specification as the corner stone of the PatternModel will
be presented. Subsequently, relations between design patterns and, based on these relations, concepts for
refinements of design patterns will be introduced which are essential for reusability issues.

4.1 The notion of a design pattern specification

According to definition 2.5, a design pattern consists of components, attributes and methods. Before the
model will be extended to support all these concepts directly, a much more general notion of a (formal)
design pattern will be introduced. This notion corresponds to a specification of a class in the object oriented
model. In the sequel this basic concept will be extended in order to support features like mentioned above.

Definition 4.1 design pattern (specification) (formal)
A structure psp = (C,Cyp) is called design pattern, if the following holds:

1. Cis finite and C C SPEC and Sum (C) must be defined
2. CgpeC
3. VC € C\Cygp holds Cyp IF C
a

In subsequent sections, PATTSPEC will denote the set of design patterns, Comp (psp) the set C of
components in psp, Cyp (psp) the specification Cyp of psp. Furthermore design pattern specification will

40

also be referred to as design pattern if the context is clear.

In other words, a design pattern consists of the following components:

e C — is a finite set of specifications. These specifications represent the components of psp. Component
specifications can be in relation to each other (cf. chapter 3). These relations altogether represent the
internal structure of psp.

e Cyp — is a specification in the usual sense (cf. chapter 3). This specification represents the higher
behaviour of the design pattern. It will also be called controlling component to emphasize the role of
this component in the context of a design pattern. Besides, Cyp is contained in C.

It is required that all components depend on the controlling component of a design pattern. This guar-
anties that a certain set of unintuitive models in components is immediately ruled out.

In analogy to the function ClassSort which has been introduced for the domain SPEC, a function
PatternSort is defined on PATTSPEC. This function associates an element psp € PATTSPEC with a
sort contained in the signature of psp.

Definition 4.2 pattern sort
Let psp € PATTSPEC. A function PatternSort is defined by:

PatternSort : PATTSPEC — SORT
PatternSort (psp) =qep ClassSort (Sig (Cus (psp)))

O

In reference to chapter 3, it can be said that a design pattern is a normal specification holding additional
information about the components and their relationships to each other. This is an essential property of
design patterns. In fact, every design pattern can be translated to a corresponding counterpart in SPEC.
Such a translation is defined by the following function.

Definition 4.3 translation function from PATTSPEC to SPEC
Let psp € PATTSPEC.

A partial function translatep_, s is defined by:

translatep_sg : PATTSPEC — SPEC
translatep_.s (psp) =dey Sum (Comp (psp))

O

The application of translatep_,s leads to a specification sp € SPEC which represents the relevant part
of the design pattern in the context of other class specifications or design patterns. Since all other parts of
a design pattern are hidden from the oustide, the resulting specification will also be called external part of
a design pattern.

Definition 4.3 provides a very interesting new point of view. A design pattern can be considered as a
class specification in the object oriented sense. This has far-reaching consequences. For instance it is now
possible to subclass a design pattern from a class specification and vice versa. The whole significance of this
relationship between a design pattern and a class specification will become intelligible in the remainder of
this chapter.

41

In this section, the notion of a design pattern specification was introduced. This concept, considered
separately, enables one to encapsulate a structure of components inside a design pattern with the possibility
of the definition of some higher behaviour. But how does reusability come into play?

4.2 The refinement relation

Analogously to object oriented relations which operate on class specifications and classes, similar relations
can be defined on design patterns. This section will discuss how ideas of object oriented refinements can
be adapted and generalized in order to introduce a refinement relation which enables one to reuse a design
pattern directly.

Direct reuse of a design pattern means that beside the reuse of normal object oriented features it should
also be possible to benefit from its internal structure.

In chapter 2, a refinement relation on design patterns was proposed in such way that in addition to
the refinement of the higher behaviour, the components of the refined design pattern should also be refined
versions of the components of the source design pattern. The internal structure of the source design pat-
tern, i.e. the relationships in which the components are, should be preserved. Thus, the possibly complex
relationships between components can be reused together with the components themselves as a whole.

Before a formal refinement relation between between design pattern will be introduced, the following
notion of a component morphism is necessary to deal with the refinement of components under consideration
of a given relation R.

Definition 4.4 component morphism
Let C,C' C SPEC.

A tuple § = (5F, (6‘1),)0,6@, ,(53,)0,60) is called component morphism preserving a relation R’ C R C
SPEC x SPEC refining Clyp € C, if the following holds:

e 0" is defined by

o' : ¢ — Cis total and injective.

e Let C' € C'. For a particular application ° (C") a function 62, must be defined satisfying the following
properties:

65 : Sig(C") — Sig (C) is a total signature morphism refining sort ClassSort (Cyp) .
The union of all these functions, denoted by 6>, must be defined, i.e.

6% : Sig (Sum (C')) = Sig (Sum (C)),

6% =des |_| 6%, must be defined, i.e. 65 are compatible VC' € C’
crer

e Let C' € C'. For a particular application 6 (C') a relation 6%, must be defined satisfying the following
property:

6%, C Alg (Sig (C")) x Mod (C").

42

c . s ()

520, /_\ - \58,

-~

<5 M'> <3 M>

Figure 4.1: For some C' € C' the application &* (C') yields a signature morphism 6%, (solid arrow) and a
relation 8%, (dashed line).

e VC' € C' let C =6 (C') be a generalized heir of C’
via the total signature morphism 62, and the relation 62, where the following holds:

vCc*reC: C* R C'=6(C") RC

Furthermore |R'|; is defined as
|R'5 =aey {(6" (4),6" (B)) : (A,B) € R'}.

The component morphism § morphing from C' to C is denoted by § : C' — mathbbC.
O

A component morphism refines a subset of SPEC using the generalized inheritance as described in
chapter 3. Each component in €' is associated with a generalized heir in C. Since the function §' is not
required to be surjective, there can be more components defined in C which do not have a counterpart in
C'. This property is crucial for extensibility issues in the design pattern context, since it allows one to add
new components during the refinement process.

In order to ensure only structure preserving refinements, another restriction is imposed on ¢'. Existing
relationships (as defined in R’) between two components in C' must also hold in R on corresponding com-
ponents in C. The same is required even if one of the components is not in C'. The heirs of two components
which are not in relation in R’ can be in relation in R after the refinement. Every relationship has to be
preserved, if R = R. However, mostly it is not necessary that every relationship between two components
inside a design pattern also holds in the refined design pattern. Supposed, a design pattern describes the
semantics of a program written in a pattern oriented language. In many cases it is not possible to deduce
all relationships between two components by the syntax of the programming language, so that a refinement
operator ist not necessarily able to preserve these non-deducable relationships. Hence, the refinement rela-
tion is weakened in order to overcome this problem by modelling R’ as a subrelation of R.

Lemma 4.5 Let C',C C SPEC. A component morphism ¢ : C' — C preserving R’ C R satisfies the
following properties.

1. |R'|; € R and in particular
2. VC|,CLeC :C] R Cy=46"(C}) |R|; &"(CY).

Proof follows immediately by the definition of |R'|,.
d

Figure 4.1 depicts the relationships between an application §' (C') and the corresponding signature
morphism 0%, respectively relation d&, for some C’ € C'.

For later considerations the composition of two component morphisms is defined in order to handle the
transitivity property of the refinement relation.

43

Definition 4.6 composition of two component morphisms

Let (Cl,(Cz,(Cg QSPEC

The composition o a: C; — Cz of two component morphisms
a:C — G and
B : Cy — Cj5 is defined by

Boa=grf (ﬂr oal, (5 o a%)CGQ (B2 o O‘g)ce&)
where C' =45 oF (C) and

B oa (C) =aey B (' (O))

B8 0 g (2) =aey B (g (2))

88 0 a8 =tes { (Flgz, eaz - D) : F € Mod (8" 0 0" (C)), (Flyz, . E) € 5%, (B|,z . D) € ok}

The composition of two component morphisms satisfies the following property.
Fact 4.7 transitivity property of compositions of component morphisms
Let C;,Cy,C3 CSPEC,RC SPEC x SPEC.

The composition of two component morphisms

a: C — G preserving Ry C R refining Cygp € C; and

B : Cy — C3 preserving Ry C R refining o (Cgp) yields a component morphism Boa preserving RooRy C R
refining Cyp,

where Ry o Ry =4e5 {(C,C") : (o' (C),a" (C")) € |Ri|, N R:}

Proof
o AT ol is total and injective, since of and 8! are total and injective.

e The proposition that YC' € C; the composition ! ool (C) is a generalized heir of C' remains unproven
for complexity reasons. In the sequel it will be assumed to hold.

e Let C,C" € C;. C R’ C'implies by a and lemma 4.5 that ! (C) |Ryo Ry|, o' (C'). Furthermore
follows by definition of Ry o Ry that |Rs o Ri|, C Ro, hence o' (C') R, o' (C'). Since 3 preserves
Ry CR,B"0a" (C) R B oal (C") also holds. Hence 3 o a preserves Ry o R;.

O

Using the notion of component morphisms; it is now possible to define a refinement relation between two
design patterns.

Definition 4.8 refinement relation between design patterns
Let psp,psp' € PATTSPEC.

psp is a refinement of psp’ via the component morphism preserving a relation R’ C R C SPEC x SPEC
5,R'CR .
denoted by psp' "~ psp L, iff

e the component morphism ¢ is defined as

§ : Comp (psp') — Comp (psp) is preserving R' C R and refining Cyp (psp’) ,

IR’ C is omitted in case R’ = R

44

o Cup (psp) =" (Cup (psp')),
e translatep_,s(psp) < translatep_, s(psp’).

O

The refinement relation uses the notion of component morphisms in order to refine the components of
psp’. This concept bases on generalized inheritance. However, the external part of the psp subclasses the
external part of psp’. Therefore, this way of refinement takes place on two levels. A design pattern eventually
results in a specification which combines both the external part and the components of the design pattern.
If these two levels interfere which each other in some way, it is possible that the refined design pattern is not
satisfiable?. Therefore, any special refinement will impose various restrictions on the form of a design pattern
in order to handle or to avoid these interferences. In the case of the particular refinement relation which
will be defined for design patterns in PP, this will also have consequences regarding its syntax and semantics.

The refinement relation satisfies the following properties.

Fact 4.9 properties of the refinement relation
Let psp, psp1, psp2, psps € PATTSPEC, R C SPEC x SPEC.

1. the refinement relation is reflexive, i.e.
id,R L.
psp '~ psp where id is the identical component morphism, i.e. id" (C") =gey C' YC € Comp (psp),
idZ, (z) =gep and idE, =qep {(M,M): M € Mod (C")},
2. the refinement relation is transitive

Boa,Ro0R1CR
e d

. a,R1CR B,R2CR
if psp1 T~ psps and psps T~ psps then also pspy PpsSps3.

Proof follows immediately by the definitions of the refinement relation.
O

The dependency relation between the component of the higher behaviour and all other components of a
design pattern has to be preserved in any case to ensure that the refined design pattern is in PATTSPEC.
Additionally, relations, that should be preserved, are usually the clientship-, subclass-, or inheritance rela-
tion on SPEC. The refinement relation in PP will have to preserve both the the syntactically deducable
clientship- and subclass relation.

The notion of design pattern specifications combined with the introduced relationship on design pattern
provide a framework which is general enough to form the basis for a theory which will eventually be used to
describe the semantics of PP.

2The word satisfiable is used in analogy to the satisfiability of specifications SPEC. A design pattern specification psp is
not satisfiable iff the set of models of one of its components is empty.

45

Chapter 5

A design pattern oriented command
language

In the previous chapter, a formalism was presented to handle design patterns from a model-theoretic perspec-
tive. However, a design pattern specification does not integrate notions which correspond to an imperative
perspective. However, they are of importance for the definition of the semantics of PP.

The aim of this chapter is to introduce an imperative command language which will eventually be used for
method implementations in PP. To this end, it is necessary to extend the theoretical framework presented in
chapter 3 by design pattern oriented features as mentioned in definition 2.3. These features include concepts
for the representation of instances, identities and states of both design patterns and their components.

A design pattern specification consists of components which in turn are represented by specifications (cf.
chapters 3 and 4). The notion of the specification is very general in nature. State based signatures and,
based on these signatures, object algebras can be used to describe a (specialized) class of design pattern
specifications supporting imperative design pattern oriented features as mentioned above.

Again, at this point it is emphasized that the well known object oriented notion has been adapted in a
way that the new definition still comforms to the ideas of the object-oriented world. It is important that the
rules of object oriented programming are not violated by the new model. In this way, the PatternModel can
be conceived as an extension of the object oriented programming model.

5.1 State based signatures

In the sequel, it will be assumed that for sorts si,...,s, contained in a signature ¥ there is also a sort
$1 X ... X 8, defined whose carrier set is interpreted as cartesian product of the corresponding carrier sets of

. . A A
81,...,8y in some particular algebra. Moreover ((al, ceeyQp)) =des (Q1,...,a,) and (a1,...,a,); =def G;.

In chapter 3, the construct of a signature was introduced in order to describe the structure of X-algebras.
Basically, a signature comprises a set of sorts and operation symbols on these sorts. A signature, which will
eventually be used to model identities and states, has to provide additional sorts for them. A state based
signature Yo is defined with respect to a normal signature ¥.. ¥ can contain a so-called basic signature Ly
which is used for the specification of basic types like Integer or Boolean which are not modelled by identities
and states but by values. ¥ can now be constructed by the following definition.

46

Definition 5.1 state based signature (cf. [5] (modified))
Let ¥ = (S, <, Ik, F,class) € SIG. A signature Yo = (So, <o, lFo, Fo,class) is called a state based signature
with respect to ¥ with basic type signature Xy = (Sv, <v,lty, Fy,classy) iff

1. ¥y is a closed component in ¥ and ¥ and class € S\Sy.

2. For each s € S\Sy there are corresponding sorts s,5 € So where s < s’ implies s <o s’ and s IF s
implies s IFo s’. In the sequel the following notations will be used. The sort s is called the sort of
identities, the sort 3 is called the sorts of states of sort s. The sort s is called an object sort.

3. There is a sort env in Sp such that for every operation f : (s1,...,8,) = so in F\Fy there is an
operation f : (env,s_l,...,s_n) — env X sg in Fp, where for all i =0,...,n,5; =4y 5; if s; € Sy. The
sort env is called the sort of environments.

O

Notation 5.2 notations for state based signatures (cf. [5])
In the sequel the following notation will be used to distinguish particular sorts and operation symbols.

e We use the notations obj — sorts (X) =ges sorts (X) \sorts (Xy) and
methods () =g4e5 opns () \opns (Xy). We denote in X by s the sort s if s € sorts (Xy) and the
corresponding identity sort of s in sorts (Xp), if s € obj — sorts (X).

e An operation f : (s1,...,8,) — s € opns(X) is called operation of basic type if s € sorts(Ty);
it is called basic operation if it is contained in opns(Xy). An operation f € methods (X) (and its
corresponding operation in ¥p) is called method.

e In order to obtain a uniform framework of methods, we define for every Y.p-algebra A and basic
operation f : (s1,...,8,) — s a function f4: Ay X Ay, X .. Ay = Aeny X A, by

(p, fA (21,...,my)) if fA(21,...,2p) is defined
undefined otherwise.

fA (paxla"-awn) =def {

O

The sort env is defined at the global level. Therefore, env is visible from every location and every function
f € opns (X0) is visible from ¢ € sorts (Xo), if f € opns (X) is visible from ¢ in sorts (X).

In order to avoid problems with certain state based signatures, in the sequel only the subclass of so-called
Y-signatures is considered. These signatures can easily be constructed based on a signature ¥ with a basic
type signature Xy .

Definition 5.3 signature X (cf. [5])
Let ¥ = (S, <, Ik, F class) be a signature, let Xy be a closed component in ¥ and class € obj — sorts (X).
Then the state based signature ¥ with basic type signature Xy is defined in the following way.

Y=gy (sorts(Ey) U{ Ids,RIds,States: s € obj — sorts (X) } U {Env},

S;:
ks,
opns (Zy) U{ m: (Env,s_l,...,s_n) — Env x sq :
m: (S1,...,5n) = So € methods (),
si = Ids, if s; € obj — sorts (X),s; = s; otherwise for i = 0,...,n},
class

)5

47

sortsz)

\ J

72
T T Q Q

Figure 5.1: Sorts in X with their corresponding sorts in X. The sorts with a surrounding circle are minimal
sorts of the real identities of a sort in X.

where the sorts Env, Ids, RId,, States do not occur in S. The partial ordering <y is defined by

<p=der ({(s,5):
(s, € sorts (Ty)As<s')V
(s=1Id,,s' =Id. ANr <7r")V
(s=1Id,,s' = RId, Nt € obj — sorts (X)) V
(s =s' = Env)
b

The relation Iy, is defined by

=gy {(s.8"): (5,8 €sorts(Ty)Aslks)V
(s=1Id,,s' =Id» N7 IF7r")}.

O

The sorts Ids; and States; will be used to model identities and states of a class or a design pattern, the
sort Env is the sort of environments. Note that the coherence of ¥ ensures the coherence of X.

In a particular X-algebra it is often necessary to associate elements of the carrier set of an identity sort
with a minimal sort (e.g. to determine the dynamic type of an instance). This can be achieved by introduc-
ing sorts RIds for every object sort s in ¥. Then, an identity in a carrier set Arg4, can always be associated
with one particular sort RIds; where s < r. The idea is illustrated in figure 5.1.

In object oriented program environments, the state of an instance is represented as aggregation of the
state of all associated attributes. In this approach, in a given signature X, an attribute X associated with a
sort s of type t will be modelled by an operation symbol X with a parameter of type s and a result of type
t. In a X-algebra, the corresponding function returns the value of the attribute in the current environment.
Depending on the type of the attribute, this value can either be a basic value or an identity of the corre-
sponding type.

An attribute signature consists in its non-basic part only of attribute operation symbols. This notion will
later be used to define algebras which have a very special representation of object states and identities.

Definition 5.4 attribute signature
A signature X = (S, <, IF, F,class) is called attribute signature with basic type signature Xy, iff Xy is a

48

closed component in ¥ and all non-basic operations in F' are of the following form
X:(s)>teFe.

These operations are called attributes. For simplicity reasons it will be assumed that attributes are not
polymorphic with respect to the dependency structure or overloaded, i.e. F;, N Fy . € opns (Zy) if (s < '
and (slfrors' lfr'))or (s=s"and r #£7').

The set of attributes associated with the type s is denoted by attr (X,s),s € obj — sorts (X). It is defined
by

attr (X,8) =ges {X : (s') = re F*: 5 <s'}
The set of valid attribute signatures is called ATT RSIG. O

Attributes are visible iff their corresponding operation symbols are visible. If an attribute of s is not
only visible from s, then it is also associated with every s’ < s. It is called object attribute (of sort r) if
r € obj — sorts (L), it is called basic type attribute (of sort r) if r € sorts (Zy).

5.2 Object algebras

State based signatures contain special sorts to represent identities, states and environments. As a matter of
fact, every X-algebra can be used to describe the semantics of PP. However, subsequent sections rely on a
particular construction of X-algebras. Therefore the class of X-environment algebras is introduced. These
algebras use records comprising the attributes of a class in order to model the state of objects. Besides,
environments have to be of a special form which corresponds to design pattern oriented modelling and im-
plementation ideas as introduced in later sections.

A X-environment algebra consists of the following carrier sets and functions:

o The carrier sets Arrq, are sets of identities. Void references are denoted by wvoids.

e The carrier sets Arg, which are defined as the union of the carrier sets of all subsorts. Then, all
identities of a subsort can also be treated as identities of a supersort which is very important for the
applicability of the substitution principle.

The carrier sets Agtqte, are modelled as records with a field for each attribute in atir (¥,s). Basic
type attributes are associated with values of the correponding basic sort, object type attributes are
associated with object identities. For accessing the records, the notations defined in B are used.

Elements of the carrier set of sort Env are pairs (pI (P57 e 50) representing a particular state of the
system. Each pair consists of the so-called active identities and mappings between active identities
and states. Active identities are represented by a dependency set which is defined on a family of sets
containing those identities of a sort which have been associated with an instance in the current state
of the system. Additionally, the dependency relation on this familiy of sets defines a dynamic view
of visibility of elements. Identities which conceptually belong to a sort ¢ may not refer via states to
identities corresponding to sorts which are not visible form ¢ in X. In this way, the dependence relation
of sorts has its counterpart in the dynamic dependence of instances. Example 5.6 shows a typical
environment,.

e Applications X4 (p,n) denote the value of the attribute X in the record p [n]A referenced by an identity
n.

e The functions create’ ., are used to model the dynamic creation of instances. The set of active
identities is enlarged by one new identity which in turn is associated with some initial state. The new
identity is created to be dependent on some other identity of sort . If the sort s is dependent on sort
L in IF° then the new instance is created directly under L in pZ.

49

e The auxiliary functions set§ are defined where set§ (p,n,) associates the attribute X in the record

D [n]A with the value or identity z.

e The auxiliary functions 14 are defined where 14 (p, n,) returns the instance which ny depends on.

Definition 5.5 X-environment algebra
Let £ = (S,<,IF, F,class) be an attribute signature with basic type signature ¥y. Let So =g4ef 0bj —
sorts (X) and let Min (So) denote the set of minimal sorts in Sp. Then a X-environment algebra A is a
Y-algebra with the following properties.

1.

All sets Arra,,s € So are disjoint and contain an element voids. Moreover, Arq, = Arra,U (Ur<s Ald,,)
and Arra =des U,es, ARrd,-

. Astate, € RECORD (attr (X, s)) for all s € Sp, where

RECORD (attr (X, s)) =dey
{(UX)X:(S’)—)TEattr(E,s) tox € [{X} - Aﬂ] fin is tOtal}

Agny € ENV (So), where ENV (So) is the set of pairs (p”, (p;”),cg,) satisfying the following prop-
erties.

(a) p’ is a dependency set ((Is)seso ,H—I) where 7y C Apja,,voids € T, and for all iy € Zs,i; € I,
holds i, IF7 i; = s IF t and for all iy € Zs holds L (IF7)% s = LIF° s.

(b) p;* € [Zs = Astate,] 4y, is total,

(c) Vs’ € Sp,Vn € Iy for all object attributes X : (s) — r € attr (X, s') where n’ = p; [n] [X] follows

either (n’ € Z and n' is visible from n in p?) or (n' = void,s for some 7' < r).

The functions X4 : Agpy x Arg, = Apne X A, for each attribute X : (s) — r € F satisty

((p",p7) . Py [n][X])
x4 ((pI,p_’) ,n) = where s’ € Sp,n € Ty, X : (s) = r € attr (X, 5)
undefined otherwise.

createfwos tApne X Apg, U{L} = Agny X Aj4,,5 € So,r IF° s are total functions satisfying

g — . . . fo)
createf“_os ((pz,pﬁ) ’nr) _ ((PZ 7 [N —s 'L‘nzts]) ;Tl) , if n, € I
undefined otherwise,

where n € Agra,, n € Z, pII =def ((I’s)
r#£s, “‘%r:def”_% U {(nr,n)}

The constant inits € Agiate, satisfies inits [X] = v, for some given default v, € A, for all basic type
attributes X of sort r in attr (¥,s) and inits [X] = void, for all object attributes X of sort r in
attr (X, s).

s€So ,II-II), T's =gef LU {n} and I, =40y Z, for r € So :

The functions set’% tApny X Ara, X Ay = Apny X Ajga, for each attribute X : (s) — r € F satisfy

("0~ 0 = g 0] [X = 2]]) ,n)
where s’ € So,n € Ty, X : (s) = r € attr (X, s)
and for all
object attributes X holds « € Z and z is visible from n in p”
or x = void, for some r' <r
undefined otherwise.

sety ((p%,p7") ,n,z) =

50

7. The functions 14: Apn, X Arg, = Apny X Ara, U{L} where r,s € obj — sorts (X),r I s satisfy

A T . — _ ((pI,pﬁ),nr),lanI
P07) = { undefined otherwise,

where n, IF$ n.

Example 5.6 Figure 5.2 shows three design pattern instances p;, p» and p3. p; is an instance of the
design pattern GraphicComposite and contains several component instances according to the definition of the
GraphicComposite (cf. appendix C.4). py is an instance of a design pattern without components describing
an X-Windows-screen. An important fact to notice is that attributes of ps can not point to component
instances inside of p;. In this case, this scenario is not possible anyway since the type information of the
components of the GraphicComposite can not be accessed by p,. But ps as instance of GraphicComposite
has all necessary type information about components in GraphicComposite. But even then, attributes of
p3 or attributes of component instances of p3 are not allowed to point to component instances owned by p;.
E.g. although the the type of the next attribute of ¢7 is compatible with the type of ¢4, this reference is not
allowed since c7 and ¢4 do not belong to the same design pattern instance.
However, the opposite direction is possible. As shown in figure 5.2, the screen attribute of ¢; points to p.
O

Y-environment algebras model identities, states and environments in a state based system a very par-
ticular way. These algebras are part of the semantic model which will be used for PP. In order to support
hierarchical construction mechanisms of classes that base on model class inclusion, the following definition
provides the more general notion of X-object algebras. In such X-object algebras, the carrier sets of identity
sorts can contain additional identities, the records of the carrier sets of state sorts can comprise fields which
are not part of the attribute signature. Moreover, environments can map between these addtional identities
and states.

Definition 5.7 Y-object algebra
Let X be a signature with basic type signature Xy and X contains an attribute signature ¥, C ¥ with basic
type signature Xy . A Y-object algebra A is a X-algebra such that A|2a = B|2a for some | -environment
algebra B, ¥/ D 3,.

(I

In [5], an additional requirement has to be fulfilled by every function m* with m € methods (X). Tt limits
the effect of functions to what is called the local state. The local state is that part of the environment which
can be reached from the parameters following the trace of references and attributes. Functions that only
modify this local state with respect to an environment are called local state transition functions. However,
for the remainder of this thesis, such a requirement is not necessary in order to obtain the same results,
although methods that satisfy method implementations as defined in the following subsection are local state
transition functions.

5.3 Commands and method implementations
In order to define a kernel command language which will later be used for method implementations, every

signature has to satisfy some additional restrictions. In the sequel it is assumed that every signature contains
at least a sort Bool in the global level which is not comparable with other sorts in this signature and the

51

Py
theCompositeComp:

P3

theCompositeComp:

display: ":0.0"
depth: 16

current:

screen:

Figure 5.2: Instances in the PatternModel. Identities for design patterns are p; and p2. p1 contains compo-
nent instances ¢y, ...,cq4, p3 contains the component instances cs, ..., cy.

logical operation symbols true, false, A,V and — with the usual arities.

Furthermore, the class of flat signatures is defined. Every operation symbol in a flat signature has to
be visible from its first parameter sort. This property is of special importance for the modelling of selfish
methods. In this approach, the implicit parameter self is passed as the first parameter. By the definition of
a signature (cf. chapter 3) it is required that there must be at least one location which an operation symbol
is visible from. Hence, this operation is visible from one of its parameter sorts or the result sort. In a flat
signature all operations symbols are required to be visible from the first parameter sort.

Definition 5.8 flat signature
A signature ¥ = (S, <, Ik, F, class) is called flat signature with basic type signature Xy, iff Xy is a closed
component in ¥ and all methods in F satisfy the condition

fi(e,s1,...,8,) > s €F°.

52

5.3.1 Commands and their execution

Commands are defined over a signature ¥ at a location c. Analogously to terms as introduced in definition
3.14, a command is a syntactic construct which will eventually be used to perform specific actions within
the context of a X-object algebra. These actions are defined by a family of execution functions representing
the semantics of commands. The ezecution of commands is indeed similar to the interpretation of terms in
Y-algebras. However, in contrast to the rather functional character of terms, a command is very imperative
in nature. The introduced class of X-object algebras is capable of expressing a state of the system. Thus, a
command can be used to alter this state in the desired way yielding a final state as the result.

Commands are used in PP to implement the bodies of methods. The aim of language design is to define
the syntax of a programming language in a way that is most efficient for the actual purpose of the language.
The command language in PP is suited for a general purpose but also taylored to use design pattern oriented
features. The command language provides constructs for

e the invocation of methods,
e the assignment of values to attributes of the current instance (self - instance),

e the sequential composition of commands,

the selection of commands,

commands for the creation of instances, the test for equality and void-references and

the up-command 1 which is used to obtain the instance the current instance is created in.

PP is supposed to be a prototype for a design pattern oriented language. It does not support loops which
are crucial for every kind of imperative language. The semantics of loops can be described by solutions of
fixed point problems. PP can be extended by this feature straightforward since these fixed point problems
can easily be expressed within the presented framework.

The formal definition of commands over a signature X at a location ¢ is as follows.

Definition 5.9 commands

Let £ = (S,<,IF, F,class) be a signature with a basic type signature ¥y, ¥, a flat signature ¥; C ¥
with basic type signature Yy, ¥, an attribute signature ¥, C X, with basic type signature Xy, ¢ €
S° Nobj — sorts (X) and X a S-indexed family of disjoint sets of variables containing a variable Self of
type c. The S¢-indexed family COM (X, X)° of commands over ¥ at the location ¢ with variables X is
inductively defined by

1. feCOM (2, X) for all f:—se F°,
2. 2 € COM (%,X); for all z € X,

3. fttr,....ty) € COM (£,X) for all f:(d,s1,...,8,) = s€F, teCOM(Z,X),
ti€ COM (X,X); ,i =1,...,n with the restriction that if

fi(d,s1,...,8,) > s €E §R(.7:d) Nopns (Xf)
then the term ¢ has to satisfy the condition

te ({Selftu{tt.:t. € COM (Z,X); ,s. € 0bj —sorts(3)}) N COM(E,X)5,

53

4 tyty € COM (S,X)C, if t; € COM (S, X)°, i =1,2,

5. if t, then ¢ else > end € COM (X, X) if t, € COM (£, X)%, ;- t1.t2 € COM (2, X)S,
t1 ==t € COM (X,X)%,,, ifti € COM (,X),i=1,2,5 € obj — sorts (%),

tisVoid € COM (2, X)g,,, if t € COM (£, X);,i =1,2,s € obj — sorts (X),

Self. (X :=t) € COM (%, X)S for all attributes X : (¢') — r € attr (X,¢) if t € COM (X, X7,

© % N

create r € COM (X, X); for all r € S¢,
10. t¢ € COM (3, X)° if t € COM (3, X)C s I u,

s

11. COM (%, X)° C COM (3, X)Cif r < s.

s

The set of commands at a location ¢ are dentoted by COM M AN D¢. If the location is not important for a
particular consideration then it is omitted and the set of all commands is denoted by COM M AN D. O

Note that in analogy to the properties of terms (cf. chapter 3), it can be shown that a command at
some location is also a valid command at all dependent locations. In particular, the following fact holds for
a signature ¥ and a variable set X.

COM (,X)° C COM (3,X) ifclk¢.

By induction can be proven that this proposition even holds for all ¢’ where ¢ I-* ¢.

The following notion of command ezxecution defines the (denotational) semantics of commands, i.e. it
defines a function which in turn determines for every command the action that is carried out in a particular
Y-object algebra. For this purpose, the state of the system which is passed to a function as parameter env
has to be considered especially. Again, commands as well as terms are executed following an innermost-first
strategy. Only when all parameter commands of a method call have been evaluated, the actual execution of
the method call can take place. However, the execution of the first parameter command changes the state
of the system. Therefore, the execution of the second parameter command depends on the result of the
execution of the first parameter command. This applies to all parameters of the function, i.e. the execution
of parameter t; depends on the execution of parameter ¢;, if ¢ < j where ¢, j specify the parameter position
in the method call. The auxiliary functions (v°); _ in the following definition handle this dependence
problem by passing the resulting environment of the previous parameter execution as current environment
into the execution of the following parameter command. In this way, all executions on the same location are
evaluated from left to right.

At this point, it is especially emphasized that commands are defined over a signature ¥ while command
executions take place in corresponding X-algebras. The execution functions (vc): are dependent on a certain
location ¢ and result in a value of type s. Formally, the family of execution functions is defined as follows.

Definition 5.10 command ezecution

Let ¥ = (S, <, Ik, Fclass) , X0 € SIG with basic type signature Xy, ¢ € S° Nobj — sorts (X), X a S
indexed family of disjoint sets of variables, A a X-object algebra and v = (vs : X5 — Aé)sey is a variable
assignment. The ezecution of commands in A is described by families of functions

((v); : COM (Z,X)§ = Ay = (Aenv X As)), 5. and

$1...8n

(00 2 COM (S0, X X COM(E X0, = Auns = (Ao X Ay X oo X A))

The functions (v°); are inductively defined by

54

10.

(V) (f) (D) =der A, envxy (P) if defined and if f:—r € F¢ s >,

(0)s (2) (p) =des (pyvr (2)) if 2 € Xy 8 > 7,
if f:(r1,...,mn) =1 € Fs>r then (vc): (f (t1y..5tn)) (D) =def

A * A A
fenvﬂ...r‘l enNUXr ((vc)rl...r" (tl, LI 7 (p) lf 7-1 T tla e 7t’l’l) (p) a“nd
A

Brsore envce ()71, (15 a) <p>) are defined

undefined otherwise,

(v°);, (ti5ta) () =des

{ (v);, (t2) (@) if (v)5, (t1) () = (P,) and (v, (t2) (p') are defined
undefined otherwise,

(vc): (if ¢, then ¢; else ¢y end) (p) =agey

(V)5 (t1) (P) if (V)50 (ts) (p) = (P', true?) and (v°)} (t1) (p') are defined
(vcgzﬁ(tg)d()h if (v°) 5,0 (to) (P) = (p’,falseA) and (v°) (t2) (p') are defined
undefined otherwise,

(7})Bool (t1 ==t)() =def

(p', false?) if (v°)i, (t1,t2) (p) = (p', 21, 72) is defined and z1 # -

(p',true?) if (v°)%, (t1,t2) (p) = (p',21.72) is defined and 21 = x>
undefined otherwise,

(v®)Bool (t.isVoid) (p) =qey

(p', trueA) (v): (t) (p) = (p',2) is defined and z = void
(p', false?) if (v°): (t) (p) = (p',x) is defined and z # void
undefined otherwise,

(v°)z (Self. (X :=1)) (p) =dey

{ setd (p',ve (Self),z) if (v°):(t) (p) = (p',z) and sety (p',v. (Self),z) are defined

undefined otherwise,

(v°)s (create v) ((p%,p77)) =der

create A{rpker ((pz,p_’) ,ac) if defined
undefined otherwise,

where z (IF5)" v, (Self) , € Zy(gr})s
(v°); (1 1) (p) =der

1M (,2) i (05 () () = (o',2) and 4 (9,) are defined
undefined otherwise,

39

The functions (UC);...sn

are inductively defined by
L (v°)7 =dey Ps

2. and if (v°);, , (t1,---,tn) (p) = (p1, %1, .., 2p) then (v°)

*

81.-8n,8n+1 (tl, s atna tn+1) (p) =def

0, x1,...,xn, ") if (fuc):"Jrl (the1) = (p',2") is defined,
undefined otherwise.

O

Analogously to the interpretation of terms, the coherence of ¥ ensures the well-definedness of the execution
functions. Furthermore, a term at a location is executed in all dependent locations of this particular location
in the same way (cf. to properties of the interpretation of terms in chapter 3).

5.3.2 Method implementations

Every notion that has been defined so far is designed to deal with signatures of arbitrary depth in their
dependency set. For simplicity reasons, however, PP provides only three different levels of nesting: the
global level, the design pattern level and the component level. Again, this limitation is not too restrictive
since it still allows to implement the design patterns presented in [8].

Taking the execution of commands as basis, any command induces a functional in a particular X-algebra
in the following way.

Definition 5.11 Let A be a X-object algebra. A command
com € COM (X, {Self :s,X1 :s1,..., Xy : $p}),. induces a functional

com™ : Apny x Ag X Ag, X ... X Ag, — Apny X Ay by
com*™ (P, p7) 20,1+ %) =qey (V)5 (com) ((p%,p7)) .

where v is the assignment given by v (Self) = g, v(X;) = z4,i = 1,...,n, if s; € 0bj — sorts (X) implies
z; € ZU{void},i =0,...,n and (v°), (com) ((pl,pﬁ)) is defined,

com*” ((pl,pﬂ) T A ,xn) is undefined otherwise.

O

Design patterns as well as components comprise method declarations together with their implementa-
tions. Methods are implemented using the previously defined command language. In this approach, methods
are selfish, i.e. there is an implicit parameter Sel f that is passed to the method at each call. Self contains
a reference to the active instance. This instance may be the instance of a design pattern or the instance
of a component. A method implementation can be redefined by subclasses' as supported e.g. by C + +.
Moreover, a method call should be polymorphic, i.e. an implementation should be selected based on the
dynamic type of the Sel f parameter. This requires that the dynamic type of Self is deducable.

A method implementation may contain recursive calls to itself. However, for simplicity reasons, method
implementations may not contain mutual recursive method calls.

I This process is also known as overriding.

56

Definition 5.12 Let X be a signature with basic type signature Xy . A method implementation imp,, over
Y with arity m : (sg,51,...,5,) — s € opns (X) is of the form

impy, =m (X; :s1,...,X, : Sp) return s is com end, sg € obj — sorts (X) and

com € COM (2,{Self : s0, X1 :81,...,Xn t8p})°.

A X-object algebra A satisfies a method implementation imp,, over ¥ with arity m : (so, s1,...,5n) —
s € opns (X) iff imp,, = m (X1 : 51,..., X, : 8,) return s is com end and m* is the least fixed point of the
functional induced by com on the real identities of sq, in particular m4 = com“2.

The algebra A satisfies a set of method implementations M I over X, denoted by A E M1, iff A satisfies
each imp,, € M1I.
(I

In this framework, the definition of X-algebras ensures that identities can be associated with minimal
sorts. A method in ¥ belongs to a sort s determined by the type of the Self parameter. However, the
corresponding function in a X-object algebra has to satisfy the method implementation only on the subset
ARia, (real identities) of Arq, (all identities).

In common object oriented programming languages such as C++, a method call m (¢, s, ..., t,) is writ-
ten in point notation, i.e. the command is equivalent to t;.m (ta, ..., t,). This notation will also be used in
the remainder. Moreover, if ¢; is the variable Sel f, then the command Sel f.m (¢, . .., t,) can be abbreviated
by m (ta, ..., tp).

5.3.3 Command translations

One of the benefits of design pattern oriented programming is the structural reuse of components of a design
pattern via refinements as described in chapter 4. In PP, a specialized kind of refinement has been realized
which bases on command translation.

Every refinement operator uses the notion of signature morphism to alter the signature within the capsule
of a design pattern. When a design pattern is refined in PP, the method implementations of the methods
of the source design pattern have to be adapted to the namespace of the refined design pattern (as pointed
out in section 2.3.3).

Definition 5.13 command translation
Let ¥ = (S, <, Ik, F,class) be a signature, o : ¥ — ¥’ be a total signature morphism refining sort ¢”,
¢ € S°Nobj —sorts (X) and X a S¢-indexed family of disjoint sets of variables. The translation of commands
via o is described by families of functions
(tg L COM (3,X)¢ - COM (E’,X’)"(C)) .
seSe
where the set of transformed variables is defined by

X, —def (X;.;)T,e(s,)g(c)

with
X, ifr#c"
Xy =def § Xer\{Self} ifr=c andc=c"
Xer ifr=c¢"and c# ¢",
2In this thesis as well as in [5], function spaces are ordered in the following way. f4 C g4 iff f4 (p,2o0,...,2n) defined
implies f4 (p,z0,...,%n) = ¢ (p,Z0,...,2,) for all p € Apne, o € ARrra, » i € As;,i = 1,...,n for any two functions

I59 1 Apny X Agg X Asy X ... X As; = Agny X As. In this approach, the functional induced by a command com is monotonic

and continuous (cf. [1]).

a7

and

;o {Self} ifc=¢"
Ker =des { 0if ¢ £ c".

and S’ =45 sorts (X').
t¢ is defined by

Lt(f)=o(f)if fimreFs>r,
2.t (z)=axifz e X, s>,

3.if f:(r,...,mn) = r € F s >r, then ¢S (f (t1, ..., tn)) (D) =des

o (f) (t5, (t1),-...t (tn)) if ¢, (t;) are defined for i =1,...,b
undefined otherwise,

4. t5, (t1; t2) =def

S (t1); tS (t2) if t(t1) and ¢S (t2) are defined
undefined otherwise,

5. t (if ty then tq else ty end) =4y

if 5 (ty) then tS (t1) else t$ (t2) fi if ¢5 (ts) ,tS (t1) and t§ (t2) are defined
undefined otherwise,

6. tCBool (1 ==t) —def

¢ (t1) == S (t2) if €€ (¢1),tS (t2) are defined
undefined otherwise,

7. 1500 (TisVoid) =g, ¢

t¢ (t) .isVoid if ¢ (¢) is defined
undefined otherwise,

8. & (Self. (X :=1)) =qes

Self.o (X) =1t (t) if t5 (t) is defined
undefined otherwise.

9. (t°); (create r) =ges

create o (r) if " IF r
create r otherwise,

10. ()5 (T 1) =des

{TWﬁwTﬁwmwﬁ@mw

undefined otherwise,

o8

O

It is of importance that the variable Self is considered separately from all other variables. Self always
refers to an instance that is of the current type. In the refined design pattern, the type of Self is equal to
the type of the refined design pattern. Furthermore, all other variables originally referring to instances of
the source design pattern are still of that type since they do not call methods of the current instance. The
variable Sel f changes its type as the design pattern morphs. This concept can also be found in the object
oriented programming language Fiffel. In Eiffel it is possible to assign the type like current to an attribute
of a class. When a new class is inherited from this class, the actual type of that attribute changes to the
type of the new class. However, this concept is in its general case as implemented in FEiffel not type-safe
(cf. [10]). Only the Self parameter can be of type like current since it always refers to the current instance.

All notions, terms and concepts that have been introduced so far represent in their entirety the Pattern-

Model. As a final step, the next chapter will introduce the syntax and semantics of PP in order to come full
circle.

99

Chapter 6

A design pattern oriented imperative
kernel language

In this chapter, the syntax and semantics of PP will be introduced. As mentioned before, PP has to be
considered as a prototype of a typed design pattern oriented imperative programming language.

In the preceeding sections, the PatternModel as a framework was introduced. While the PatternModel
is a model with rather abstract notions and concepts, the language PP addresses the actual programming
stage in software engineering. PP founds on the PatternModel making it possible to actually implement
design patterns. It will become intelligible in this chapter that PP overcomes the problems and meets the
requirements imposed on a design pattern oriented language mentioned in section 2.2.2.

6.1 The syntax of PP

In appendix A, the syntax of PP is defined in EBNF form. Using this form it is very difficult to understand
the correleation between the syntax and the semantics of PP. Certain sytactic constructs considered together
form an entity. If they are considered separately, however, they lose their context. In these cases it is quite
hard to track the actual sense of that construct. Because of this reason, subsequent definitions whill rely on
the following abstract syntax of PP.

Definition 6.1 abstract syntax of PP
In the sequel, the following notations for the data definition part of PP will be used.

(I) a design pattern definition is syntactically described by the following construct.

P =design pattern P is
refinements
Ry,...,Ry
subclasses design patterns Dy, ..., D;
uses design patterns Uy, ..., U,
components
Cy,y...,C,
attributes A
methods M
method implementations IM P
end design pattern

60

(IT) a refine statement R;,i =1,...,k in (I) is of the following form.

R; =R; refines Q
refine V[into WY, ..., V], into W},
rename by 6%
select 7"
end refinement

(ITT) a component definition C;,i = 1,...,0in (I) is of the following form.

C; =component C; is

recast R'y recy, ..., Ry recy,
subclasses components Df,...,D;,
uses components Uy, ..., U],
attributes A’

methods M’

method implementations I M P’
end component

(IV) a recast statement recy, ,i=1,...,k" in (III) is of the following form.

recR, =
rename by 6§
select 7¢
end recast

O

Additionally, it is assumed that in a given system of design pattern expressions the following holds. Most
of these items follow common sense. Others are listed for convenience reasons.

Assumptions 6.2 assumptions for the data definition language part of PP

1. Typically, (meta-) variables C,Cy, D, E, ... denote design patterns or components (i.e. expressions of
type (I) or (III). Expressions of type (II) (refinements) will be denoted by R, Rj,.... Identifiers for
these expressions will be denoted by calligraphic letters C,C1,D,E, R,

2. Given a system P of design pattern expressions, there is a one-to-one correspondence between design
pattern identifiers and design pattern expressions denoted by P =4y P[P] or P[P] is undefined if
there is no such design pattern expression. It is moreover assumed that a component identifier is
unique within that particular design pattern it is defined in. Therefore, the association between a
component identifier C and a component expression C' also depends on a design pattern and is denoted
by C =4y P [C] or PP[C] is undefined if there is no such component expression. The same applies
to refinements for a design pattern. The one-to-one correspondence between refinement identifiers of
a design pattern and a refinemment expression is denoted by R =4.; P¥[R] or P¥'[R] is undefined if
there is no such refinement expression.

3. PP allows both the modelling of objects and values. Values are modelled by a basic system of satisfiable
class specifications B at least containing specifications for Bool and Int with term generated semantics
and non-empty carrier sets (cf. [5]).

61

4. Expressions of type <command> are directly treated as elements of the set COMM AN D. Expres-
sions P of type <design pattern id> will be treated as sorts denoted by Ps. Expressions C of type
<component id> which occur inside a design pattern expression are treated as elements of SORT in
the following way. Since sorts have to be unique throughout a signature regardless any context, the
corresponding sort for an expression of type <component id> is obtained by combining the correspond-
ing design pattern identifier P and the component identifier denoted by C% =g4.¢ P :: C. The design
pattern identifier is determined by the context of the <component id>. In some cases, identifiers can
refer to both components and design pattern. In order to obtain a uniform framework, it is defined
that QF =g4.; Qg for some design pattern Q.

5. Attributes in PP are identifier. They have to be transformed in order to treat them as operation
symbols in an environment of signatures.

(a) X7 =des P uX: (CE) — sf iff X =X: s is a component attribute,
(b) XE =4ep P =X: (Ps) = EF iff X =X: € is a design pattern attribute and € is a component
identifier,

(c) X% =g4eftX: (Ps) = s; iff X =X: s¢ is a design pattern attribute and sq is not an component
identifier.

Then the set A% is defined by

AE =def {XﬁXGA}

6. A method declaration is part of the DDL of PP. Therefore, only identifiers (not sorts) are used for
the definition of parameter- and the result types. However, the corresponding operation symbols in a
signature use sorts instead of identifiers. Besides, the name of a method may not be unique throughout
the whole design pattern system. In order to avoid confusions regarding this namespace problem, a
<method> in PP defined inside a design pattern P will be treated in the sequel as elements of OPN S
in the following way.

(a) mR =gep P um: (Cg,s’l,...,s;) — s¢ iff m =m(Xy :s1,...,X, 1 84) returns so is a component
method,
(b) Mm% =ges P um: (735,3’1, . .,s;) — s iff m =m(Xy :s1,...,X, 1 84) returns sq is a design pattern

method and contains component identifiers,

(c) mp =gegm: (Ps,sh,...,s,) — o iff m =m(Xy :s1,..., X, :s,) returns so is a design pattern
method and does not contain any component identifiers.

where s, =4.5 £ if s; = € is a component identifier and otherwise s} =4, s; for i = 0,...,n. Then
the set ME is defined by

MFE =def {m?:mEM}.

7. Every method defined in a supercomponent of a component is implicitly reimplemented in that com-
ponent using the method’s original implementation if it is not overridden by the developer. In this
way, all methods of a supercomponent are overridden and can therefore be treated homogeneously.
The same applies to design pattern methods in super- and sub- design pattern.

8. For the corresponding expressions, the following properties are assumed to hold.

(I) D; is a design pattern identifier and P [D;] must be defined for i = 1,...,l. U; is a design pattern
identifier and P [U/;] must be defined for i =1,...,n.

62

(IT) Q is a design pattern identifier and P[Q] must be defined, V] and W} are component identifiers
where P? [V!'] must be defined for i = 1,...,k". Therefore these identifier will be considered in
the context of (). The rename statement renames only internal methods and attributes in). The
select statement selects only (renamed) methods of Q.

(IIT) R'; is a refinement identifier and R} = PP [R';] must be defined for j = 1,...,k" where P is the
design pattern expression this component belongs to.
Moreover, for every D' € {D},...,D}}, PP [D'] must be defined. For every U’ € {U],..., U},
PP [U'] must be defined.

(IV) Let R’ be the corresponding type (II) refinement expression of R and let V' be the component in
@ which this component has been refined to. The rename statement renames only methods and
attributes in V. The select statement selects only (renamed) methods of V.

O

6.2 The semantics of PP

The definition of the semantics of PP is divided into two separate parts. In a given a system of design
pattern expressions, there are design pattern expressions that are written from scratch (flat design patterns
expressions) and design pattern expressions that refine from other design pattern expressions. In a first step,
all refinements of a non-flat design pattern expressions have to be eliminated. The result of this process
is a flat design pattern expression. In this way, refinements are handled on the level of PP since the the
flattening yields valid design pattern expressions.

Definition 6.3 The flattening of the refinement structure in PP (semantics of PP part I).
The flattening of a design pattern is described by a partial function

F* : (design pattern sys) — (design pattern) — (design pattern)

which transforms the specified design pattern to a design pattern which is flat in the refinement structure,
i.e. the resulting design pattern expression does neither contain any refinement expressions nor component
expressions inside the specified design pattern which contain recast statements.

In the first place, the following auxiliary functions are introduced.

1. There are three sorts of signatures Sig. The first one composes the signature of a component expression
within a given design pattern system P and a particular design pattern expression P’. The second family
of signatures Sig composes the signature of the higher behaviour of a design pattern expression P’
within a given a given design pattern system P. The third class of signatures Sig comprises the first
two cases. It represents the total signature of a design pattern expression.
First, P’ has to be transformed into a design pattern expression that is flat in its refinement structure,
i.e. there are no refinement expressions in P. This can be achieved by the definition P =4.¢ Fp [P'].
In the following definitions all identifiers refer to expressions in the flattened design pattern expression
P.

63

(a) The signature of a component expression is defined by
Sigh' [C] =aes
L no__
SiOFC] =aer (Sig(Gen () + 3 Sige [PID] + 3 Sy [P14] +

25@{ [PF D] + izl Sigt [PP [ué]]> o

(C%,

¢t <{@)%.....0%},

Ps I+ CE I+ 0,

(M) U (A)E).

(b) The signature of the higher behaviour of a design pattern expression is defined by
Sigp [P'] =def
l n
SigelP] =aes (Sig(Gen(®) + X Sige P[0+ 3, Sige P4) &
3 i=1

=1

(PSa
Ps <{(D1)g,---,(Di)s},
P P
1k PsiF{(C)F, .)5}
MEUATR).
(c) The total signature of a component expression is defined by
—P
Sigp, [C] =ades
Sigp [C] =aes Sigh [C] + Sige [P].
(d) The total signature of a design pattern expression is defined by
Sigp [P'] =des
= o =—P
Sigp [P =def ; Sigp [Ci] -
2. A signature morphism specified by a refinement R inside a design pattern expression P is induced in

the following way. of [R] morphs the sorts and operation symbols of a design pattern specified by a
refinement R into the elements of the current design pattern P. It is defined as

ok [R] : Sigp [P[Q]] — Sigp [P] refining sort Qg
with 0’15 [R] =aef ((o]f,? [R])S , (o]f,? [R])F) by
WNE ifs=WNgi=1,.. .k

PS ifS:QS
if s £ (W%, i=1,...,k",s # Qs

undefined otherwise.

(015 [R])S (8) =des

64

Furthermore, let op = f: (s1,...58,) = So.

or [fl(sh,...,s)) = sy if 6p is defined, f € dom (6F)
and all (of [R]) (s;) are defined
(of [R])F (op) =des f(shy...,sh) = sg if 6 is defined, f & dom (6p) Uim (6F)

and all (of [R])S (s;) are defined
undefined otherwise,

where Vi € {0,...,n}

(of [R])S (s;) if s; = (C)g, C is a component identifier in P[Q]
and (of [R])S (s;) is defined,
o — if s; = Qg,0p = m%, m is a design pattern method in P[Q],
ided i=1and (of [R])S (s;) is defined,
S if the above case is not true and (o} [R])S (s;) is defined
undefined otherwise,

and

6F =dey 03U || 6% [reck],
cec
C is the set of components defined in P which contain recast expressions for the refinement referenced
by R and

6% [reck] =der {(m%, (m')?) :(m,m') € Ef%‘} .

3. Based on of [R] a morphism «f [R] = ((¢f [R]),, («f [R]) ,» («6 [R]),, » (e [R]) 4, p) 18 introduced. Tt
is used to morph identifiers, methods and method implementations in PP. It is defined by

& if (€Y% = (o [R]) 4 (6F) is defined
P — S P S \~Ss
(5 [F]), (£) def { undefined otherwise,
X' if (X)5 = (oF [R]) » (X2) is defined
P = S P o F
(1) 4 (X) =des { undefined otherwise,
P _ m! i (m')g = (oF [R]) . (m@) is defined
(1) 5y (M) =des { undefined otherwise.

For the morphing of method implementation it is necessary to distinguish between a component method
implementation and a design pattern method implementation because the corresponding implemen-
tations have to be translated to the correct context. Let imp be the method implementation of a
component method or a design pattern method m of the form imp = m(X; : s1,...,X,, : s,) returns s

is com end. Then (uf [R]),,, p is defined by

P . _ m' is ¢, (com) end if m' = (uf [R])F (m) is defined
(e [R])IMP (imp) =def { undefined otherwise,

where

o= ESQ if m is a component method in component E in Q
~%f 1 Qg if mis a design pattern method,

t¢ is the translation of commands via of [R] and s’ =45 £F if s = £ is a component identifier and
otherwise s’ =4.¢ s,

65

4. Based on of [R] a component morphism 6% [R] is defined as follows!.

5F [R) : Comp (D% [Q)) = Comp (DPs [P)

v MP[GEIR),(©)] i sp=ME[C]
(0% [R])" (sp) —def{ Mﬁ[l[D(]P o ifszZ;:Mi[Q]-

with

P 0 _ P 2
(6P [R])Sp —def Ip LM [R]Sig(sp)

and

(B [R))Y =ae {(E(%;[RDE,D): E € Mod (3£ [R])" (sp)) , D € Mod (sp),

sp

Esig(Gen(8) = D)sig(Gen®) }

Let P be a design pattern expression (type I) within the design pattern system P. Then the function F™*
is defined as k consecutive applications of F. F* is defined by

F3 [P) =gey Fp[... Fp[P]..]
N— ————
k times

F itself eliminates the first refinement expression R; in P and all recast statements in components in P that
refer to Ry. In order to distinguish between identifiers of the specified design pattern, the flattened design
pattern @ =4y F* [P[Q]] that is specified by Ry and the new, refined design pattern Fp[P], the following
name convention is used. Identifiers and variables in P appear normally as proposed in notation 6.1, in @
they appear with a hat (i.e. like ¢). Other identifiers and variables in the refined design pattern appear with
a check mark (i.e. like C). F is defined by

Fp [HEsign pattern P is
refinements

Ry, ..., Ry
subclasses design patterns Dy,...,D;, Q
uses design patterns Uy, ..., U,
components

Ci,...,Cs

attributes AU A

methods M U M

method implementations M P U IM P
end design pattern

The components C1, . ..,Cs have to be completly rewritten. They are defined in the following way.

1. C’i,z’ =1,...,0 represents the refined component of C’, via C; =def (L]f; [Rl])l (él) under consideration

of the component P¥ [C;], if defined. All identifiers and variables which occur inside a component
expression according to 6.1 refer to this component.

IThe functions which are referred to are part of semantics (IT) (cf. definition 6.4). However it is necessary to introduce § at
this point since it logically belongs to the process of the flattening of a design pattern.
21f ¢ is a signature morphism defined on 3, then the corresponding signature morphism on ¥ is denoted by o.

66

(s =dey component Ciis

! / ! /
recast R's recy,,, ..., R'w recy ,
subclasses components Df,...,D;,, Dy, ... ,D;I
uses components Uy, ..., U, U1, ... U},

attributes A’ U A’
methods M' U M’

method implementations IM P U IM P’
end component

W.lo.g. it is assumed that R'; = Ry for each component. Then, the sets A’, M’ and IMP' are defined

by
A =des (& [R1]) (X) ‘X ¢ A’}
M’ =def (Lg[Rl])M(m)imEMl}ﬂTC,
P - .~ . . ot
IMP =q5 {imp: imp=ages (tf [R1]);0sp (zmp) ,imp € IMP ,
imp implements a component method m and m € M’ } .
2. Cj,i=06+1,...,0 represents a newly introduced component Cj,j € {1,...,0} with respect to R; in

P ie. C; #W;,h=1,...,k". In this case, C; =def Cj.
The sets A, M and IMP are defined by

A =aer (i [Ra]),, (X) X edis internal}
M =def (LHI;[Rl])M(m)ZmEM}ﬂTT,
IMP =g; {imp: imp=aes (i [R1]),yp (irﬁp) Limp € IMP,

imp implements a design pattern method m and m € M} .

In a second step, the semantics of a system of flat design pattern expressions can be described.

Definition 6.4 The semantics of PP (part II).
The semantics of a component defined inside a design pattern is described by a partial function

M : (design pattern sys) — (design pattern) — (component) - SPEC.

The semantics of the higher behaviour of a design pattern is described by a partial function
M : {design pattern sys) — {design pattern) - SPEC.

The semantics of a design pattern in PATTSPEC is described by a partial function
DP : (design pattern sys) — (design pattern) - PATTSPEC.

The semantics of a design pattern (system) in SPEC is described by a partial function

M : (design pattern sys) — {psin (PATTSPEC)) — SPEC.

In the first place, another class of signatures AttrSig is defined.

67

There are three sorts of signatures AttrSig. The first one composes the attribute signature of a compo-
nent expression within a given design pattern system P and a particular design pattern expression P’. The
second family of signatures AttrSig composes the attribute signature of the higher behaviour of a design
pattern expression P’ within a given a given design pattern system P. The third class of signatures Sig
comprises the first two cases. It represents the total attribute signature of a design pattern expression.

First, P’ has to be transformed into a design pattern expression that is flat in its refinement structure,
i.e. there are no refinement expressions in P. This can be achieved by the definition P =4y Fp [P']. In the
following definitions all identifiers refer to expressions in the flattened design pattern expression P.

1. The attribute signature of a component expression is defined by
AttrSigh [C] =aey
l n
AttrSigh [O] =ges <Attr5ig (Gen (B)) + > AttrSigp [P [Di]] + > AttrSigp [P [Us]] +
i=1 i=1

4 n'
AttrSigh [PP [D]]] + Y AttrSigf [PP [u;]]) >
=1 =1

(cz.
ct <{@)%.... 0%},
Ps - CE IF0,
(A5)
2. The signature of the higher behaviour of a design pattern expression is defined by

AttTSigp [Pl] =def
l n
AttrSige [P] =ges <Attr5z'g (Gen (B)) + Y AttrSige [P[D;]] + . AttrSige [P [%]]) @
i=1 i=1

(7)57
Ps <{(D1)gs---,(D1)g},
LIF P IF {(61)75’,...,(00)759}7
A7),

3. The total signature of a component expression is defined by

AttrSz'g;I [C] =dey
AttrSz'g]f; [C] =aey AttrSigt [C] + AttrSige[P].

4. The total signature of a design pattern expression is defined by
Att’l‘SigP [P/] =def
AttrSige [P =ae; 3. AttrSigy [Cy].
i=1

If all Sig[C] and all Sig[C] are defined then the functions M are defined as follows. Again, the definition
of the functions M relies on the fact that the design pattern expression P is flat in its refinement structure.
Therefore an arbitrary design pattern expression P’ has to be flattened into P using the above definition
P =45 Ff [P']. In the following definitions all identifiers refer to expressions in the flattened design pattern
expression P.

68

1. The semantics of a component expression is defined by

M{[C] =qes
Mg [C] =aey _ -
Gen[B] +MP[D1,...,_D1] +M]p[U1,...,Um]+
ME D+ ...+ ME D))+ ME U+ ...+ MY UL+
Mp [P] +
(Sige [C].
{A € Alg (S_ig]g [C’]) tAisa S_z'g]f; [C]-object algebra with

basic type signature Sig (Gen [B]) and an attribute

signature AttrSig]f; [C] and A satisfies
the component method implementations IM P’ in C'})

|Sig{" €]
2. The semantics of the higher behaviour of a design pattern expression is defined by

Mp[P'] =gey

Mp[P] =gey
Gen[B]+MP[D1,...,DZ]+M]p[U1,...,Um]+
ME[C]+ ...+ ME [Co] +

{A € Alg (S—ig]p [P]) : A is a Sigp [P]-object algebra with

basic type signature Sig (Gen[B]) and an attribute
signature AttrSigp [P] and A satisfies the
design pattern method implementations IM P in P})

|Sigs[P)

By the above definitions it can easily be seen that Mp[P] is dependent on M{ [Ci],i = 1,...,0 and in
turn every such M{ [C;] is dependent on My [P] for a design pattern expression P. Therefore, these two
definitions have to be considered as a system of equations. Its solution results in the semantics of the design
pattern expression P as well as in the semantics of all component expressions C}.

In order to solve this system of equations, it is necessary to find the greatest fixed point of the system
starting from the following conditions?:

(ME(CT)y =aes (Sigh[C) Alg (Sig [C1)).
(M [Py =aer (Sige[P], Alg (Sige [F])).

The semantics of a design pattern expression in PATTSPEC is defined by

DPp [Pl =gey
DPp[P] =qcy ({Mp[P], M [C1],..., M [Col}, Mp[P]).
The semantics of a design pattern expression (system) in SPEC is defined by

Mpl[Py,...,Py] =gy translatep_s(DPp[Pi]) + ...+ translatep_,s (DPp[Py)]) .
O

3For this purpose, a partial ordering > on SPEC is introduced by sp > sp’ iff Sig (sp) = Sig (sp’) and Mod (sp) O Mod (sp').

69

By induction can be shown that starting from the conditions above, the number of models is monotonously
decreasing. The basic idea of the proof is as follows.

The specifications M [C] and Mp [P] are iteratively computed by the following calculus.

(METC), = (Sigf[C], Alg (Sigf[C])) (Mp[P]), = (Sige[P]. Alg (Sige[P])).
(MEICD), =t QB[P+ griey MIPDy = (ot (ME 1D+) iy
(ME1C), = (oot OB PD, s) gy VBIPD, = (o + (D), +)

|Sig:[P)

It immediately follows that (M [C])O = (ME [C’])1 and (Mp[P]), = (Mp[P]),. Based on the assump-
tion (Mp[P)),_, = (Mp[P]),_, and the calculus above can be shown that (M{ [C])n_1 = (ME [C’])n It
can also be shown that based on the assumption (M{"[C]) =, = (Mg [C]) _, and the calculus above follows
that (Mp[P]),_, = (Mp[P]),. By induction follows that the given calculus is monotonous on >.

Therefore, the worst case would lead to an unsatisfiable specification. This implies that a greatest fixed
point exists and that the given problem converges into that fixed point.

6.3 A deduction system for components and design patterns in
PP

Based on the definition of the semantics of PP, it is now possible to deduce relations syntactically. To this
end, it has to be shown first that syntactically intended relationships also hold semantically.

Fact 6.5 Let P be a given system of design pattern expressions. Then, the following properties hold for a
arbitrary design pattern expression P and a component expression C' contained in P.

1. DPp[P] is a design pattern specification,
2. Relations on component level:
(a) ME[Cl < ML [D}] for alli=1,...,l',
(b) M U] — MF[C]foralli=1,...,n'
3. Relations on design pattern level:
(a) Mp[P] < Mp[D;] for alli=1,...,l,
(b) Mp[P] < Mp[Q] where @ is the design pattern expression referenced in R; for all i = 1,...,k,
(¢c) Mp[U;] — Mp[P]foralli=1,...,n.

o

Proof follows immediately by the definition of the semantics of PP.
O

The following definition introduces a deduction system on the level of components expressions. It enables
one to deduce semantic relations based on the syntax of PP.

4The remaining components are abbreviated by ... since they do not change througout the whole process.

70

Definition 6.6 a deduction system for component expressions
Let P be a given system of design pattern expressions. Then, a deduction system for component expressions
can be defined as follows.

(SC-C) For all design pattern expressions P containing a component expression C'
. C <« Diforalli=1,....,0',
2. FE Ul — Cforalli=1,...,7n/,
(Ref-C) for all component expressions E in P
.. - EXE,
2. - E— E,
(Trans-C) for all component expressions E, F,G in P

L. if Y E< F and H) F < G then Y E < G,
2. if HP E— Fand H) F — G then F) E — G,

(Rel-C) for all component expressions F and F in P
1. if - E < F then MY F — E,

(DPR-C) for all R;,i = 1,...,k where @ is the design pattern expression R; refines from and for all
components E and F' in Q

1 if Y E— Fthen tL E — F
2. if Y E < Fthen H) E< F

where B =4.p P [(i£ [Ri]), (€)] and F =y P [[R), (7))].

Fact 6.7 The deduction system presented in definition 6.6 is sound, i.e. the following holds. Let P be a
given system of design patterns. Then, the following properties hold for a arbitrary design pattern expression
P and contained component expressions E and F.

1. if F¥ E < F then MF [E] < ML [F),
2. if £ E —» F then M [E] — MZ [F).

Proof follows by fact 6.5 and the properties of the clientship- and subtype- relations (cf. [5] and chapter 3).
a

The refinement, operator in PP has been defined using concepts of program transformation. In many
situations, it is necessary to prove that certain properties hold throughout the refinement. Regarding the
refinement in PP, it is especially of importance to show that the object oriented clientship- and the subtype
relations between the components of the source design pattern are preserved by the refinement. This ensures
that method implementations that are the result of the command translation (cf. definition 5.13) can be
executed in the context of the refined design pattern. As a consequence follows that this specialized kind of
refinement maintains runtime safety of the implementation in the refined design pattern.

The following fact ensures that the refinement used in PP is a valid refinement as defined in chapter 4
preserving the syntactically deducable clientship- and the subtype relations between components.

71

Fact 6.8 Let P be a given system of design pattern expressions. Then, the following property holds for a
arbitrary design pattern expression P.

6F[R:],R'CR
ppp[q) "

where () is the design pattern expression referenced in R; for alli =1,...,k and

DPp[P]

1. R’ are deducable clientship relationships in) and R is the clientship relation in SPEC or

2. R' are deducable subtype relationships in @) and R is the subtype relation in SPEC.

Proof follows by the definition of the flattening of design patterns expressions (cf. 6.3).
|

In analogy to the deduction system presented in definition 6.6, a deduction system for design patterns
expressions can be defined. Again, the aim of the deduction system is to deduce relations syntactically.

Definition 6.9 a deduction system for design patterns expressions
Let P be a given system of design pattern expressions. Then, a deduction sytem for design patterns expres-
sions can be defined es follows.

(SCR-DP) For all design pattern expressions P

P R ’
1. forall R; withi=1,... kFpQ " TLFER

(a) R’ are deducable clientship relationships in @ and R is the clientship relation in SPEC
or

(b) R’ are deducable subtype relationships in @ and R is the subtype relation in SPEC,
2. Fp P& D; foralli=1,...,1,
3. FpU; — Pforalli=1,... n,

P where

(Ref-DP) for all design pattern expressions E

1. Fp E Wi g for some relation R,
2. fp EKE,
3.FrpE — E,

(Trans-DP) for all design pattern expressions E, F, G

61,R1CR 02,R2CR 62001,R20R1CR
faard faard faad

1. ifFp B Fand Fp F G then Fp E
2. ifFp E K F and Fp F <€ G then Fp F K G,
3. iprE—)F&ﬂdeF—)Gthenl—pE—)G,

G

(Rel-DP) for all design pattern expressions E and F'

L if e EOES® P then bp E < F.

2. ifFp E K F then bp F — E.

72

Fact 6.10 The deduction system presented in definition 6.9 is sound, i.e. the following holds. Let P be a
given system of design patterns. Then, the following properties hold for a arbitrary design pattern expressions
FE and F.

1. if kp B "ZST F then DR [E] V55" DR [F)
2. if bp E < F then Mp[E] < Mp|F],
3. if bp E — F then MP[E] — M}p[F]

Proof follows by fact 6.5 and the properties of the clientship- and subtype- relations (cf. [5] and chapter 3).
(I

Note that the deduction system introduced above are not complete. In [5], this lack is compensated by
a deduction rule that includes all relations that are not deducable syntactically but semantically. In this
thesis, however, there is no need for such a rule. Therefore, it is ommitted.

6.4 The satisfiability of design patterns

The semantics of a system of design pattern expressions results in a specification. In order to obtain useful
programs, it has to be guaranteed that this specification is satisfiable. Especially, the refinement relation
that is used by PP requires a non-empty set of models in order to maintain the model relation between
source design pattern and refined design pattern.

As defined in chapter 3, a specification is satisfiable if the associated set of models is not empty. However,
the satisfiability of a design pattern system implemented in PP can not simply be deduced by syntactic
criterias. Moreover, additional restrictions have to be imposed on PP programs. Basically, these restrictions
rule out unintuitive cases and cases in which the resulting signature is not coherent. Applied to PP, these
restrictions could informally be expressed as follows.

1. Each non-basic operation in Sig (Mp [Py, ..., P,]) is associated with exactly one method or attribute
in P.

2. Each non-basic operation in Sig (Mp [Py, ..., P,]) is associated with at most one method implemen-
tation in IP.

3. If there are two methods m (s1,...,s,) = s and m (t1,...,t,) = t in Sig (Mp[Py,..., P,]) with the
same arity and comparable parameter sorts then their parameter sorts beside the Sel f parameter have
to be equal, i.e. sy = ts,...,8, = t,. This restriction can be relaxed for non-selfish methods. In this
approach, however, covariant sorts lead to problems of type-safety.

4. Tt has to be ensured that Sig (M]p [Py,.. .,Pn]) is coherent. E.g. when multiple subtyping is used,
it has to be ensured that the definition of the subcomponent- or design pattern expression contains
corresponding select statements in order to select the appropriate method implementations.

Although it is not the goal of this thesis to prove the satisfiability of a specification that result from
the semantics of PP, a theoretical proof could be found on the construction of a particular model of that is
contained by this specification.

73

Chapter 7

Final remarks

7.1 Related work

The book [8] represents a mile stone in software engineering. Design patterns are introduced as abstract
structural entities that base on an object oriented view of things. The notion of a design pattern provides
a powerful way to improve the efficiency of the development of large-scale software. However, since design
patterns in [8] base on an informal paradigm, they can not be applied to a specific problem in an automatized
process. Soon after the time when [8] was published first, the need for a support on the side of programming
languages had been expressed.

In [4], the importance of a language support of design patterns was underpinned by common problems
that occur when design patterns are implemented in object oriented programming languages. These problems
include traceability, reusability, the self-problem and the implementation overhead. However, the approach
of the LayOM as introduced in [4] is rather different to the ideas that have been applied in this thesis.
The LayOM extends the object oriented programming model by so-called layers. The concept of layers
which enables one to intercept and alter messages from and to objects provides a versatile programming
facility making it possible to represent the nature of design patterns. On the one hand, design patterns can
be implemented in this way and even be reused by extended object oriented mechanisms, but on the other
hand, their original component structure as proposed e.g. in [8] gets lost in this process.

The article [9] provides an interesting new perspective of design pattern language support that is much
more similar to the approach presented in this thesis. [9] strictly distinguishes between two different levels:
the program level and the extract level. Usually, the software development in conservative object oriented
programming languages entirely takes place on the program level whereas the actual design pattern imple-
mentation resides on the extract level. Design patterns on this level can be applied leading to programs in
the usual sense residing on the program level. In contrast to the PatternModel and PP, these notions have a
static character since the resulting programs are object oriented. Furthermore, problems of type safety have
not been worked out yet.

7.2 Future work

The results obtained by this thesis can be applied and extended in various areas. Especially from the per-
spective of the PatternModel, there are many different aspects that have not been discussed yet.

One of these aspects is the so-called design by contract as it is realized in FEiffel. Design by contract

provides powerful means for the development of maintainable and error-free software. The developer can
specify such a contract in form of e.g. pre- and postconditions that are evaluated when a method, etc. is

74

entered or exited. If the contract is broken, special error-handling routines can be invoked. Especially, when
design patterns are included in the development process, design by contract can be benefical since it allows
to specify properties on a finer grain.

Another future extension could deal with distributed environments and parallel computing. Since the
PatternModel and PP provides a strong notion of visibility and encapsulation, it is possible to handle sin-
gle design pattern instances independently. Therefore, these instances can compute results of calculations,
etc. autonomously and parallelly. Presently, products like CORBA deal with the distribution of objects in
networks. One approach could be to integrate the notion of the design pattern into such a system. Another
approach could directly base on a language extension of PP.

On the technical side, all these theoretical considerations have to accompanied by the development of
corresponding tools on a computer. In the case of PP, a compiler for PAL has already been implemented in
[6]. As a second step, the GoF design patterns have to be implemented in PAL in order to provide a basis
for design pattern oriented software engineering.

7.3 Conclusion

The introduction of the PatternModel as a design pattern oriented programming model has been a main
aim of this thesis. It provides a framework for the definition of the semantics of the design pattern oriented
programming language PP based on the design mechanisms of abstract data types. The notions used in
the PatternModel extend conventional object oriented notions, the PatternModel itself is an extension of the
object oriented programming model on a conceptual level.

Due to encapsulation- and reusability problems, the class of object oriented programming languages can
not be used for the implementation of design patterns. PP overcomes these problems by using new design
pattern oriented features. The means provided by PP are sufficient to implement and apply design patterns.
On the other hand, PP also supports common object oriented concepts. Therefore, PP represents a powerful
design pattern oriented language that does not contradict the object oriented paradigm.

75

Appendix A

The syntax of PP in EBNF

<design patterstdysign:pattern> {, <design pattern>}*
<design pattemiesigr=pattern <design pattern id> is <design pattern exp> end design pattern

<design pattemefirpmments <refinement> {, <refinement>}*
subclasses design patterns <design pattern id> {, <design pattern id>}*
uses design patterns <design pattern id> {, <design pattern id>}*
components <component> {, <component>}*
attributes <attributes>
methods <method head> {, <method head>}*
method implementations <method imp> {, <method imp>}*

<refinement> <<refinement id> refines <design pattern id> <refinement exp> end refinement

<refinement expfine:=<<component ref> {, <component ref>}*
rename by <method renaming> {, <method renaming>}*
select <method head> {, <method head>}*

<component refgomponent id> into <component id>

<method renarimgthad=d> — <method id>

<method head&method id> (<entities>) return <type>

<entities> :=<entity> {, <entity>}*

<entity> 1= <entity id> : <type>

<type> := <design pattern id> | <component id> | <class spec id>
<component>camponent <component id> is <component exp> end component

<component esqrast:<refinement id> <recast> { <refinement id> <recast> }*
subclasses components <component id> {, <component id> }*
uses components <component id> {, <component id> }*
attributes <attributes>
methods <method head> {, <method head>}*
method implementations <method imp> {, <method imp>}*

76

<recast> ::= <recast exp> end recast

<recast exp> remame by <method renaming> {, <method renaming>}*
select <method head> {, <method head>}*

<attributes> <Zentities>
<method imp3Xmethod head> is <command> end
<command> ::=as presented in definition 5.9

<design pattern id>,
<component id>,

<class spec id>. :identifier of a basic type

77

Appendix B

Basic notions of partial finite
mappings (cf. [5])

Definition B.1 Let M, N be two sets. For relations R C M x N we define
dom (R) =g4ey {m : (m,n) € R} ,im (R) =gey {n: (m,n) € R},

A partial finite mapping p is a finite subset of M x N satisfying the property (m,n),(m,n') € p=n=n'.
The set of partial finite mappings with respect to M and N is denoted by [M — N]fm- We use the following
notations.

[] =def w; id —def @, p[m - ’I’l] =def {(mlanl) : (mlanl) €p, m' 7& m} U {(m,n)},
[m1 = n1,...,mg = ng] =gey [][ma = na]. .. [mr = ngl,

] = n, if (m,n) € p
p ~def 1 undefined otherwise.

p is total iff dom (p) = M (which requires M to be finite).

p1 and py are compatible iff py [m] = po [m] for all m € dom (p1) N dom (p2).
p1 and ps are disjoint iff dom (p1) Ndom (p2) = 0.

p1 C po iff py and py are compatible and dom (p1) C dom (p2).

If p; and p, are compatible then the mapping p; U ps is characterized by

p1[m], if m € dom (py)
p1 Ups[m] =ger & p2[m], if m € dom (p3)
undefined otherwise.

Let (p;);c; and I-indexed family of partial finite mappings p; : M; — N;. We extend the notations for partial
finite mappings to families of partial finite mappings in the following way.

dom ((pi) ;1) =aes |J dom (i) im ((pi)icr) =aes |Jim i) ,
iel iel
[=desr (Pi)icr, where p; =gey [] for alli € I,
p[m —in] =acs (7)) ;,; where 7j =aes pj if j # i and 7 =qeg pi [m — n],
[m1 iy N1y o ME —4y nk] =def [] [m1 — i1 nl] . [mk i nk] .
P = (pi);e; is total iff for all i € I, p; is total. p = (pi);c; and T = (73),c; are compatible (disjoint,
respectively) iff p; and 7; are compatible (disjoint, respectively), and p C 7 iff p; C 7; for all i € I. If p and

T are compatible then p U T =g4e5 (pi U Ti);c;-
As usually, we omit indices if the context is clear.

78

Appendix C

Selected design pattern
implementations

C.1 List

design pattern List
components
component ltem

attributes
next : Item

methods
setNext(anltem : ltem) returns Item

method implementations

setNext(anltem : Item) returns Item is
do

self.next := anltem
end
end component
component ListComp
uses components
Item
attributes

first : Item,
current : Item

methods

add(anltem : Item) returns ListComp,
delete returns ListComp,

getCurrent returns Item,

rewind returns ListComp,

next returns ListComp,

previous returns ListComp,

isLast returns Boolean,

isEmpty returns Boolean

79

method implementations

add(anltem : Item) returns ListComp is
local

templtem: Item
do

if self.isEmpty
then
self first := anltem;

self.rewind

else
templtem := self.current;
self.current := anltem;
anltem setNext(templtem.next);
templtem.setNext(anltem);
self

end

end,

delete returns ListComp is
local

templtem : Item

do
if not self.isEmpty
then
if self.first == self.current
then
self first := self.current.next;
self.rewind
else
templtem := self.previous(self.current);
templtem.setNext(self.current.next);
self.current := self.current;
self
end
else
self
end
end,

get returns ltem is
do

self.current
end,

rewind returns ListComp is
do

self.current := self first
end,

next returns ltem is
do

if isLast

then
self.rewind
void

else

self.current := self.current.next;
self.current
end

end,

previous returns Item is
local

templtem : Item
do

if self.isFirst
then
void
else
from
templtem := self.current;
self.rewind
until
self.current.next == templtem
loop
self.next
end;
self.current
end

end,

isEmpty returns Boolean is
do

first.isVoid
end,

isFirst returns Boolean is
do

(isEmpty) or (self .First == self.current)
end,

isLast returns Boolean is
do

(isEmpty) or ((self.current.next).isVoid)
end

end component
attributes

theListComp : ListComp
methods

make returns List
method implementations

make returns List
do

self.theListComp := create List::ListComp
end

end design pattern

C.2 Subtyping

design pattern Subtyping
components
component Parent
end component
component Child
subclasses components
Parent
end component

end design pattern

C.3 Composite
design pattern Composite
refinements
SubtypinglLeafRef refines Subtyping
refine

Parent into Component,
Child into Leaf

end refinement,
SubtypingCompositeRef refines Subtyping
refine

Parent into Component,
Child into CompositeComp

end refinement,
ListRef refines List
refine

Item into Component,
ListComp into CompositeComp

rename by
theListComp — > theCompositeComp
end refinement
components
component Component
methods

operation returns Component,

add(anltem : Component) returns Component,
delete returns Component,

getCurrent returns Component,

rewind returns Component,

next returns Component,

previous returns Component

method implementations

operation returns Component is do self end,
add(anltem : Component) returns Component is do self end,
delete returns Component is do self end,
getCurrent returns Component is do self end,
rewind returns Component is do self end,
next returns Component is do self end,
previous returns Component is do self end
end component
component Leaf
methods
operation returns Leaf
method implementations
operation returns Leaf is do self end
end component
component CompositeComp
methods
operation returns CompositeComp
method implementations

operation returns CompositeCom is
do

from
self.rewind;
self.current.operation
until
(self.next).isVoid
loop
self.current.operation
end
end

end component

end design pattern

C.4 GraphicComposite
design pattern GraphicComposite
refinements
LeafRef refines Composite
refine

Component into Graphic,
Leaf into Line,
CompositeComp into Picture

end refinement,
CompositeRef refines Composite

refine

83

Component into Graphic,
Leaf into Circle,
CompositeComp into Picture

end refinement,

components

component Graphic

recast LeafRef

rename by

operation — > draw

select

end reca

draw returns Graphic,

add(anltem : Graphic) returns Graphic,
delete returns Graphic,

getCurrent returns Graphic,

rewind returns Graphic,

next returns Graphic,

previous returns Graphic

st

end component

component Line

recast LeafRef

rename by

operation — draw

select

add(anltem : Graphic) returns Graphic,
delete returns Graphic,

getCurrent returns Graphic,

rewind returns Graphic,

next returns Graphic,

previous returns Graphic

end recast
attributes
x1 : Integer,
yl . Integer,
X2 : Integer,
y2 : Integer
methods

draw returns Line

method implementations

draw returns Line is

do

end

end compone

— draw a line using x1, y1, x2, y2

nt

component Circle

recast CompositeRef

84

rename by
operation — draw
select

add(anltem : Graphic) returns Graphic,
delete returns Graphic,

getCurrent returns Graphic,

rewind returns Graphic,

next returns Graphic,

previous returns Graphic

end recast
attributes

x @ Integer,
y : Integer,
radius : Integer

methods
draw returns Circle
method implementations

draw returns Circle is
do

— draw a circle using x, y, radius
end

end component
component Picture
recast CompositeRef
rename by
operation — draw
select

draw returns Picture,

add(anltem : Graphic) returns Picture,
delete returns Picture,

getCurrent returns Picture,

rewind returns Picture,

next returns Picture,

previous returns Picture

end recast
end component

end design pattern

85

Bibliography

[1]
2]

3]

[4]

[5]

[6]

[7]

[9]

[10]

J.W. de Bakker: Mathematical Theory of Program Correctness. Prentice-Hall, 1980

Helmut Balzert: Lehrbuch der Software- Technik
ISBN 3-8274-0042-2 Spektrum Akademischer Verlag, 1996

Jan Bosch, Goerel Hedin and Kai Koskomies. Language support for Design Patterns and Frame-
works, 1997

Jan Bosch: Design Patterns & Frameworks: On the Issue of Language Support,
In Bosch et al. [3].

Ruth Breu: Algebraic Specification Techniques in Object Oriented Environments,
ISBN 3-540-54972-2 Springer-Verlag Berlin Heidelberg New York, 1991

Stefan Biinnig: Entwicklung einer Sprache zur Unterstitzung von Design Patterns und Implemen-
tierung eines dazugehorigen Ubersetzers
Master’s Thesis, University of Rostock, Department of Computer Science, in preparation, 1999

Stefan Biinnig, Peter Forbrig, Ralf Ldmmel and Normen Seemann: Design pattern oriented pro-
gramming University of Rostock, Department of Computer Science, 1999

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns,
ISBN 0-201-63361-2 Addison Wesley Publishing Company, 1994

Eyoun Eli Jacobsen: Design Patterns as Program FEztracts
Aalborg University, Department of Computer Science. In Bosch et al. [3].

Pete Thomas, Ray Weedon: Object-Oriented Programming in FEiffel,
ISBN 0-201-59387-4 Addison Wesley Publishing Company, 1995

86

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2

4.1

5.1
9.2

Reference semantics between objects L Lo Lo 8
Notations for relations between classes oL Lo o o 9
The design pattern Composite 13
The design pattern Graphic Composite Lo o 13
The design pattern List e e e e 16
Implementation of the design pattern List o 19
The refinement of design patterns L L e 21
Implementation of the design pattern List o . 22
The usage of a design pattern: relations between reusability, instantiation and level of ab-

straction of design patterns L Lo 23
Visualization of visible elements L oL 27
Morphism of sorts 35
Visualization of the application of a component morphism 43
Sorts in a signature with their corresponding identity sorts in a state-based signature 48
Instances in the PatternModel. e 52

87

Eklarung

Ich erklére, dafl ich die vorliegende Arbeit selbsténdig und nur unter Vorlage der angegebenen Literatur und
Hilfsmittel angefertigt habe.

Rostock, den 31.05.1999 Normen Seemann

88

Thesisses

1. Using object oriented programming techniques, it is possible to apply a design pattern to a special
problem, however, it is not possible to implement the design pattern itself. For this purpose, it is
necessary to use more advanced, design pattern oriented programming techiques.

2. The introduced design pattern oriented model PatternModel together with the design pattern oriented
programming language PP directly support the notion of a design pattern, its refinement and instantion
which allows the reuse of whole class structures and the actual implementation of design patterns.

3. The introduced design pattern oriented model PatternModel together with the design pattern oriented
programming language PP improve the development of software in terms of reusability, traceability
and maintainability.

4. The PatternModel represents a framework defining basic design pattern oriented concepts and notions
using the approach of algebraic specifications.

5. The design pattern oriented imperative programming language PP provides constructs for supporting
design pattern and refinements. Its semantics is defined in a denotational way using the notions
contained by the PatternModel.

89

