Integration of Design Patterns into
Object-Oriented Design using Rational Rose

Diplomarbeit

Universitat Rostock

INFORMATI

Fachbereich Informatik

vorgestellt von ~ Danko Mannhaupt

geboren 1974-10-10 in Greifswald
Matrikel-Nr. 094200997
Betreuer Prof. Dr.-Ing. habil. Peter Forbrig

Abgabedatum 2000-05-31

Zusammenfassung

Design Patterns haben sich in den letzten Jahren als grofie Hilfe bei der objekto-
rientierten Softwareentwicklung erwiesen. Eine Unterstiitzung durch Werkzeuge
ist aber leider noch in sehr geringem Umfang verfiigbar. Aufbauend auf Unter-
suchungen zur Programmiersprache Pal., mit der ein methodisch neuer Ansatz
zur Softwareentwicklung demonstriert wurde, wird ein Konzept zur Integra-
tion von Pattern in CASE-Werkzeuge, insbesondere Rational Rose, erarbeitet.
Eine prototypische Implementierung weist die Tragfahigkeit des Konzeptes nach.
Damit wird musterorientierter Softwareentwurf mit Rational Rose ermoglicht.

Schliisselworter
Rational Rose, Entwurfsmuster

Abstract

In recent years, design patterns have proven to successfully assist in object-
oriented software engineering. Unfortunately, tool support is still very limited.
A concept to integrate patterns with CASE tools, in particular Rational Rose,
shall be developed that is based on investigations for the programming language
PaL, which demonstrated a methodically new approach to software engineering.
A prototype implementation demonstrates the feasibility of the concept. It
enables Rational Rose to support pattern-oriented software design.

Key Words

Rational Rose, design patterns

CR-Classification

D.2.11 [Software Engineering]: Software Architectures — Patterns;

D.2.2 [Software Engineering]: Design Tools and Techniques —
Object-Oriented Design Methods, Computer-Aided Software Engineering
(CASE);

D.2.13 [Software Engineering]: Reusable Software — Reuse Models;
K.6.3 [Management of Computing and Information Systems]:

Software Management — Software Development

Remark
It is assumed that the reader is familiar with object-oriented concepts. Further
information can be found in the reference list.

CONTENTS

Contents

1

Introduction
1.1 Motivation e
1.2 Outline e

Object-Oriented Design with Design Patterns
Development Phases
Object-Oriented Design

Design Patterns

4.1 A Software Engineering Trend
4.2 A Pattern For Patterns L.
4.3 Pattern Catalogues
4.4 Pattern Application00 L.
4.5 Benefits of Pattern Usage
4.6 Disadvantages, Costs, and Alternatives

Design Pattern-Oriented Programming

5.1 Imperfections with Design Pattern Implementation
5.2 The Pattern Model 0.
5.3 The Programming Language PaL

Design Patterns in Object-Oriented Design

6.1 Creation of Design Pattern Description.

6.2 Application of Design Patterns

6.3 Patterns as System Components
6.3.1 Explicit Representation of Design Patterns in FACE . . .
6.3.2 Pattern Oriented Frameworks
6.3.3 Patterns as Model Elements

6.4 Refinement and Combination

6.5 Review.

II Integration of Design Patterns into Rational Rose

7

Existing Approaches and Solutions

7.1 Blueprint Technologies — Framework Studio
7.2 QOSES — Quarry
7.3 Limitations of Existing Approaches

Integration Concept

8.1 Model Element Pattern

8.2 Working with Design Patterns.
821 Creation
8.2.2 Editing
8.2.3 Refinement and Combination

83 Final Result

10

11
11
11
12
13
13
14

15
15
16
17

21
21
22
25
25
26
27
29
31

CONTENTS

9 Prototypical Implementation
9.1 Extending Rational Rose.

9.2 General Concept

9.3 Model Element Pattern
9.4 Working with Design Patterns.
9.5 The Combination Dialog
9.6 Implementation Details
9.7 Update Management

9.8 Code Generation

IIT Final Remarks
10 Future Extensions
11 Conclusions

A Glossary

46
46
47
47
50
50
57
o8
59

61

61

63

64

6 1 INTRODUCTION

1 Introduction

1.1 Motivation

Software continues to control an ever-increasing part of peoples’ life, although
it is not always perceived. The production of software is a very complex process
with an unlimited number of influences. As for the production of any good, the
objective of the producer is to make it as good, cheap and fast as possible to
win the market and to yield a profit.

One of the most interesting results from the Total Quality Management
(TQM) research [2, 11] is that in order to improve the quality of a product, one
needs to document and adhere to a certain process. The sequence of steps and
decisions are to be gathered and written down. Starting from a well-defined
process that produces constant quality, process analysis and improvement can
begin. This approach can also be applied to software engineering. Following
a well-defined software production process stabilizes and enhances the quality
of software products. The object-oriented approach, which consists of object-
oriented analysis, design, programming languages, and other components is an
improvement that has been introduced in research and commercial environments
for a number of years. This thesis introduces another improvement to the soft-
ware engineering process: the consistent and universal usage of design patterns
during object-oriented design.

The current state of software engineering is often described with the term
‘software crisis’. It refers to the fact that a large number of projects do not
reach the final state, that is, they are not used. In contrast, projects are aban-
doned during the different phases or are not accepted by users and therefore,
are not used. The goal of software development process models such as the
Rational Unified Process [17, 18], OOTC or the V-Model [22] is to provide the
developer or project manager with a template for the development. Successful
application of these process models has increased the quality and acceptance
of software products. Again, quality can only be the result of adherence to a
well-defined process. The models mentioned above incorporate the knowledge
and experiences from a large number of more or less successful software projects.
Early involvement of the customer and users can greatly increase acceptance.
Elements such as use cases become part of the development process and ensure
that the focus remains on the solution of customers problems and the relief of
users. This thesis does not discuss the advantages or disadvantages of either one
of the process models. On the contrary, it introduces the application of design
patterns, which can be integrated with each of the models.

Besides quality, costs and speed decide about success and failure of a software
project. Companies in the software business always look for the competitive
advantage, to improve their position on the market. A quickly executed project
below the estimated price is the result every project manager is eager to achieve.
Reuse has been the key to accomplish these targets.

Object-oriented technologies support reuse in different ways: Inheritance
hierarchies in programming languages reuse class structures and method imple-
mentations. Object-orientated analysis enables the reuse of business and process

1.2 Outline 7

models, after they have been defined with use cases, class diagrams and other
structured documentation. A good object-oriented design results in a balanced
class diagram, which can be easily extended if the requirements of the current
project change, and which can be used again with minor modifications for simi-
lar applications. It will be shown how best-practice knowledge in form of design
patterns can further improve the reusability of object-oriented design results.
Although the application of design patterns adds complexity to the development
process, it can reduce the costs and increase the speed of project completion.

The development of complex software systems is normally a team effort. A
number of people work together to specify, design, implement, test, and docu-
ment a system. These kind of projects cannot be managed without the help of
computers and software itself. Developers need a database that contains their
knowledge, decisions and documents. Such a database is called repository. An
integrated development environment supports the later stages of software devel-
opment. Most often they are used for implementation, debugging, and tests. A
general term for all tools that facilitate software development and communica-
tion between developers is Computer-Aided Software Engineering (CASE) tools.
The functionality of these programs varies widely. Object-oriented CASE tools
support the application of object-oriented technologies, for instance by provid-
ing the necessary diagrams. Examples include objectiF by microTOOL and
Rose by Rational.

Both design patterns and CASE tools are becoming increasingly accepted
and popular. This thesis will show how object-oriented CASE tools, Rational
Rose in particular, can be enhanced to integrate an extended object-oriented
design process, which is based on design patterns.

1.2 Outline

The thesis is divided into three parts: The first part deals with the object-
oriented development process with regard to design patterns. After giving a
short introduction to development phases in section 2 and object-oriented design
in section 3, design patterns are presented in section 4. Their application,
benefits, and costs are discussed. Section 5 explains the pattern model and the
PaL pattern programming language that serve as a basis of this paper. Section
6 presents approaches to integrate patterns with object-oriented design.

Integration of design patterns into Rational Rose is covered in the second
part of this thesis. Section 7 introduces two existing approaches and their
limitations. Section 8 develops a concept to integrate design patterns with
Rose based on the pattern model with patterns as model elements and system
components. A prototype has been developed, which is presented in section 9.
Screenshots illustrate its use.

Finally, the third part provides suggestions to extend the prototype that can
be seized by other developers or Rose engineers. Conclusions finish the thesis.
A glossary with several abbreviations, literature references, and a list of figures
can be found in the appendix.

8 2 DEVELOPMENT PHASES

Part 1

Object-Oriented Design with
Design Patterns

The first part of this thesis introduces object-oriented design and design pat-
terns, explains a new approach to programming with design patterns, and il-
lustrates the construction of complex software systems with patterns as basic
components.

2 Development Phases

The most common and well-known model for the software development process
is the waterfall model. It assumes that a number of phases follow one after
the other. The output documents from each phase are the input for the next
step, hence the name waterfall. There is little or no interaction between the
phases. The number and names of phases vary, the following should serve as an
example:

1. Feasibility Study

2. Requirements Specification (Analysis)
3. Design

4. Implementation

5. Test

6. Delivery

Object-oriented methods do not commonly use this strict phase model. In
contrast, iterative, incremental models are used, for example Boehm’s Spiral
Model [4] or others, which are more oriented towards Rapid Prototyping. How-
ever, software development requires a number of tasks to be executed, no matter
which process model is used.

Object-oriented application development can follow a use case driven ap-
proach [12, 23]. Use cases are developed systematically at the beginning of a
project. They form the basis for further development. Use cases are applied to
capture and document requirements. They describe processes in the applica-
tion domain from a client’s perspective. Every use case is accompanied with a
scenario description.

The use case driven approach enables the partition of the complex system
into smaller components, based on one or more use cases. These subsystems
can then be developed by teams. The results are synchronized and reviewed
regularly. The development process is divided into iterations. Every iteration

consists of a planning phase and an analysis-design-implementation cycle. The
functionality of the system incrementally grows with every step.

During analysis, a system is modeled in an ideal environment [3], whereas the
design realizes the specified application on a platform with required technical
parameters. Analysis determines and describes system requirements. Object-
oriented analysis (OOA) is concerned with real-world objects, which can be
tangible objects or persons as well as events or processes in the application
domain. A real world object becomes part of the object model by abstraction.
Objects with similar properties and behavior belong to the same class.

Often, the analysis model is separated into two parts: static and dynamic
model. The static model describes the classes of the system, associations, and
inheritance relationships. Packages partition the system. The dynamic model
contains business processes, scenarios of object collaboration, and state ma-
chines, which define an object’s life cycle. A user interface might be required
during the analysis phase for a discussion with the client.

10 3 OBJECT-ORIENTED DESIGN

3 Object-Oriented Design

The object model that was constructed during OOA does not contain informa-
tion about user interface presentation of objects, about storage, distribution,
or performance optimization. It models what the system should perform. The
design on the other hand is concerned with all the issues mentioned before. It
defines how the performance will be achieved.

The fact that object-oriented analysis and object-oriented design (OOD) uti-
lize the same set of techniques simplifies the transition and interaction between
both phases. The Unified Modeling Language (UML) [30] represents the key:
It defines syntax and semantics of a variety of models and diagrams. Examples
include use case models, class diagrams, interaction diagrams or state charts.
Through the use of a common communication language between developers, the
development process became easier, more efficient, and less error-prone. UML
diagrams are used throughout the complete development cycle of object-oriented
systems.

OOD [5, 23] can be divided into 2 major phases: architecture or system
design, and implementation design. Design of system architecture refers to the
separation between business logic, user interface, and data storage. The ob-
jective is to separate these layers in order to preserve flexibility. It must be
possible to update or exchange one of the system layers with only a limited and
small number of changes on other layers. For instance, it might be necessary
to exchange the database management system to utilize advanced functionality
or increased performance. Required changes on the system must be confined
to the data access layer. For another system, the client might demand a web
interface, where the original implementation only supported a traditional work-
station interface. With the user interface layer separated from business and
interaction logic, it should be relatively easy to implement another system in-
terface. Implementation design refers to the refinement and adaptation to a
particular environment and programming language. Properties of the target
software and hardware architecture are considered.

Models developed during OOA are refined in the design phase. The OOA
object model becomes a draft for the business logic layer. It is revised for
efficiency and reuse. Existing frameworks, class libraries, and interfaces are
considered. It will be explained later how design patterns are used at this
stage. The user interface prototype is systematically advanced and becomes the
foundation for the user interface layer. Furthermore, system components for
data access are developed, and software and service distribution is discussed.

In comparison to OOA, the differences between the OOD model and the
future program are reduced. Every class, every attribute and operation of the
model will be part of the program. The separation between static and dynamic
model is continued. The static model contains the complete class model of
the application and the partition into packages and subsystems, whereas the
dynamic model describes the complex communication between objects.

A more detailed description of object-oriented design principles and guide-
lines can be found in the literature [5, 23]. The next section introduces the
concept of design patterns.

11

4 Design Patterns

4.1 A Software Engineering Trend

Design patterns were one of the major recent trends in both the scientific and
commercial software development community. Countless journal articles and a
number of books were published. An entire conference series deals with design
patterns — the annual Pattern Languages of Programming (PLoP) conferences
[10]. This section gives an introduction and explains the benefits of design
patterns.

Architect Christopher Alexander defines the term pattern as follows:

Each pattern is a three-part rule, which expresses a relation between
a certain context, a problem, and a solution. [1]

He refers to the architectural domain, but patterns are also found in software
architecture. Experts know patterns from practical experience and follow them
in developing applications with specific properties. They are used to solve design
problems both effectively and elegantly [9].

4.2 A Pattern For Patterns

Gamma et al., also known as the Gang of Four (GoF), defined in [14] the struc-
ture for a pattern description. This pattern for patterns has won recognition
and is used with minor modification in different pattern catalogues. According
to Gamma, these elements are used to describe a pattern:

e A distinct name that concisely defines the design problem, its solution,
and impacts. The name simplifies communication between developers,
and design discussions and documentation of design decisions.

e Context and problem specification. Context refers to the general situation
in which the problem occurs. The problem description explains specific
design problems. It can also contain conditions that must be met before
a pattern application is reasonable. The general problem statement can
be completed by a set of forces. Forces can be requirements the solution
must fulfil, constraints that must be considered, and desirable properties
the solution should have. Balancing the forces is a key to the problem
solution.

e The solution. It describes the elements that form the design solution as
well as their relationships, responsibilities, and interactions. In contrast
to algorithms or other programming guidelines, design patterns do not
contain a specific implementation, except as an example. Patterns are like
templates that can be applied in a number of situations. A class diagram
is often used to visualize the solution. However, the diagram itself cannot
explain a pattern. Some patterns have the same class diagram, but the
semantics, the meaning, is different. In addition to textual descriptions

12 4 DESIGN PATTERNS

and class or object diagrams, interaction or collaboration diagrams are
used to define dynamic behavior of pattern members. Thus, interaction
diagrams formalize the pattern documentation.

e The consequences section explains the effects of pattern application. Ad-
vantages and disadvantages of the design are provided. Understanding
and documenting the consequences of design decisions objectifies system
design. These decisions influence performance, efficiency, reusability, flex-
ibility, extensibility and portability of the system.

e Finally, ezamples in particular programming languages and domains usu-
ally accompany pattern descriptions. Understanding and application of
the pattern by a developer is simplified.

According to Gamma, et al., design patterns are descriptions of cooperating
objects and classes that are tailored to solve a general problem in a specific
context. They are distinguished from algorithms and other concepts that can
be reused as single classes on one side, and frameworks or subsystems and class
libraries for application specific domains on the other side.

Class libraries are collections of classes, which the developer is able to use,
i.e. define objects of these classes, run operations, and define subclasses. Sim-
ple class libraries support code reuse and can be seen as object-oriented func-
tional libraries. Contrastingly, frameworks consist of a number of collaborating
classes that implement a reusable design for a particular application domain.
They contain concrete and abstract classes that define interfaces. A framework
user typically creates subclasses that later receive messages from the framework.
Frameworks allow design reuse. All applications developed with the same frame-
work have a similar structure and are easier to maintain.

In comparison to frameworks, design patterns are more abstract. Applica-
tion of a design pattern always requires a new implementation. Design patterns
are smaller than frameworks. In fact, frameworks typically contain a number of
patterns. In contrast to frameworks, design patterns are not limited to a single
application domain.

4.3 Pattern Catalogues

The number of patterns discovered increases with every publication. The
best-known catalogues of design patterns include books by Gamma et al. [14],
Buschmann et al. [9] as well as the series ‘Pattern Languages of Program De-
sign’, which started with [10] and was recently supplemented by a fourth book
[16].

Design patterns can be classified according to their tasks as creational, struc-
tural, and behavioral patterns. Furthermore, class and object based patterns
are distinguished. Class based patterns contain relations between classes. They
are expressed with inheritance relationships. Object based patterns consist of
relations between objects that can be changed during their life time. Creational
patterns support the independence of a system from the way its objects are

4.4 Pattern Application 13

created and composed. Examples from [14] include object based Abstract Fac-
tory and Builder, and class based Factory Method. Structural patterns deal
with the construction of larger structures out of classes and objects. Object
based structural patterns such as Composite and Decorator merge objects for
additional functionality. They provide more flexibility than class based patterns
because the object structure can change at run time. Behavioral patterns define
interaction between objects and classes. Complex control flows are described.
Examples include Observer, Visitor and Iterator.

Unlike design patterns, analysis patterns (see [13]) are used to capture typ-
ical class configurations during analysis. As explained earlier, this means that
analysis patterns are not concerned with performance or reusability aspects,
but are used to model reoccurring situations in domain analysis. More general
examples include List, Role and Group, specific analysis patterns in the finance
domain are for instance Transaction and Portfolio. Analysis pattern catalogues
normally have a structure similar to those of design patterns.

4.4 Pattern Application

Developers can benefit from the use of design patterns. To exploit the advan-
tages, they either need to be familiar with pattern collections including conse-
quences of application, or they are required to have access to a pattern catalogue
in form of a book or a database. Ideally, a developer meets both conditions,
having a general understanding of patterns and an overview of examples, as well
as a catalogue at hand, which can be used to look up further information.

A scenario for design pattern application will be given next. Say, a devel-
oper has a preliminary class model. A shortcoming is recognized in the model,
for instance the lack of extensibility or flexibility if requirements change. The
developer would then recall the pattern knowledge and study the catalogue to
find a solution. Using the examples and solution, the model could be adjusted
to reflect the pattern recommendations. This usually adds classes, attributes
or methods to the model. The decision to apply a design pattern must be doc-
umented. This can be achieved by naming classes and properties accordingly
and adding a note and a reference to the model documentation containing the
reasons that have lead to the decision.

4.5 Benefits of Pattern Usage

The positive effects of design pattern application are not only predicted by au-
thors of articles and experienced by software engineers in their projects. An
experiment was conducted to capture the influence [24]. Its intention was to
study the real influence of using design patterns and to prove or disprove several
theses and the conditions under which they are true. Only the main conclusions
of the article are given here. The authors used controlled experiments for sci-
entific study of the theses. Both students and professionals participated in the
investigation. Practical considerations suggested to study maintenance tasks.

First, it was detected that improved communication by design pattern doc-

14 4 DESIGN PATTERNS

umentation increases productivity and/or quality, depending on the situation.
Second, the use of a design pattern instead of a simpler alternative solution can
be either beneficial (increased flexibility with same or smaller costs) or disad-
vantageous. Generally, good common sense of software engineering is a sound
indicator for the usefulness of patterns in comparison to alternatives. The re-
sults of the experiments recommend accurate documentation of design pattern
usage in software because it distinctly decreases the maintenance efforts.

4.6 Disadvantages, Costs, and Alternatives

Design patterns can assist developers, but there are costs associated with them.
Patterns add complexity to development. Successful application requires pro-
found comprehension of pattern fundamentals and knowledge of pattern cat-
alogues. Developers must be educated to acquire this knowledge. Moreover,
equal education among team members is necessary. Otherwise, developers do
not understand design decisions and architecture of systems.

To evade these additional costs and problems, a development team or project
management might choose to ignore design patterns completely. This represents
a short-sighted solution, because patterns do provide advantages, particularly
in the later stages of a software’s life cycle, during maintenance. Alternatively,
frameworks with integrated patterns can be used. Thus, pattern application is
simplified with the provision of predefined extension interfaces. To conclude,
application of design patterns is an investment in software development, which
is associated with startup cost but which will yield a profit, eventually producing
products of increased quality.

15

5 Design Pattern-Oriented Programming

After giving an introduction to design patterns, this section presents a concept
of programming with design patterns. The Pal approach, which forms the
foundation for the main part of this thesis, will be explained.

5.1 Imperfections with Design Pattern Implementation

Several aspects triggered the development of a design pattern-oriented program-
ming model. First, design patterns are not identifiable in a program listing. The
designer chooses to apply a pattern in a certain situation. Classes and opera-
tions are added, names are changed. Already in design stage, without proper
documentation it becomes hard to identify patterns in the finished design. How-
ever, for maintenance reasons it is vital to know in which place a pattern was
used. Otherwise, development cannot benefit from the flexibility and other ad-
vantages of the pattern. The same consideration applies to design patterns in
implementation stage. In order to correctly apply and maintain design patterns
in source code, suitable documentation is required. However, there is another
possibility: Design patterns become components of the program as structuring
elements, larger than classes and objects and smaller than modules or subsys-
tems. This approach to a design pattern-oriented programming model has been
jointly developed by Normen Seemann and Stefan Biinnig [6, 7, 29].

The conventional approach of design pattern application in an object-
oriented programming language would be to represent the pattern components
as classes and objects of the language. Relations between components are mod-
eled as relations between the respective classes. Interactions and collaborations
are implicitly contained in operations. Besides the already mentioned problem
of identifiability, these other issues emerge: [29]

e A design pattern can be seen as an encapsulated unit, which separates its
components from the outside. Object-oriented programs generally contain
a number of design patterns as well as other classes. They are all treated
in the same way, a separation is impossible. In addition to this static
encapsulation problem, there is a dynamic encapsulation problem, which
refers to the fact that the objects that were created as instances of design
patterns are not separated from other objects. A design pattern can be
applied many times. The resulting objects are associated with the pattern
rather than with conventional classes.

e A design pattern is an abstract concept that cannot be used in a program
without modifications. It has a general component structure and it is
not confined to a single application. Therefore, before a design pattern is
applied, refinement takes place, which includes renaming of components,
properties and operations, and implementation of operations. This refine-
ment process cannot be expressed with object-oriented techniques, because
relations to other components are broken. In the result, a design pattern
cannot be reused in the same way a class can be reused. A developer is
forced to re-implement the design pattern again and again.

16 5 DESIGN PATTERN-ORIENTED PROGRAMMING

e The refinement should be configurable. The developer is in control of the
process, the granularity and the sequence of steps.

5.2 The Pattern Model

To meet these requirements, [29] develops a pattern model. A design pattern
is the fundamental element of the model. It is a static element that can be
instantiated at runtime, is referenced with an entity, modified by functions and
can be deleted, just like objects of a class. A pattern becomes a programming
language construct, similar to a class. The definition must contain the following
elements:

1. Components, which form the parts of a pattern. They are comparable to
classes, have properties and attributes. Component instances are associ-
ated with one particular pattern instance.

2. Attributes, which can be classified as internal and external attributes.

3. Methods implement the higher behavior of a design pattern. They can
also be either internal or external. The higher behavior of a design pattern
describes global integrity conditions and the pattern’s reaction within the
context of other design patterns or classes.

A program in this model is a system of design patterns with the form described
above. Execution starts with the instantiation of a specified top design pat-
tern (the application pattern) and the following execution of a designated main
method of that pattern.

Tiling Patterns Before the concepts of refinement and combination in the
pattern model will be explained, another approach shall be mentioned: In his
article [20], D. Lorenz explains a way to tile design patterns. He uses patterns
to describe the implementation of other patterns. It is understood that the
issue of pattern relationships is one of the difficult aspects of patterns. In [14],
patterns are classified according to purpose and scope. Furthermore, a diagram
shows relationships between patterns. However, a pattern can simultaneously
be (or share large portions with) an implementation of several other patterns.

Patterns can be put together, just like tiles. It can be shown how both
Interpreter and Visitor pattern can be tiled together with other respective pat-
terns to form a reflective Interpreter and a Visitor mosaic. Thus, patterns are
program components, which can be put together for additional functionality.
Furthermore, an additional degree of reuse can be gained by allowing inheri-
tance, that is, letting visitors refine or extend other visitors. Meta-visitors and
meta-interpreters can generate visitors, which in turn serve as building blocks in
constructing more complex visitors. To conclude, some patterns or tiles fit nicely
together and may always need to work together, such as Interpreter and Visitor.
Others have the same shape but different purposes. A set of mini-patterns form
the basis that is used to construct others.

5.3 The Programming Language PaL 17

The Pattern Model The pattern model treats design patterns as com-
ponents of a program, similar to classes in conventional object-oriented pro-
gramming languages. Among other concepts like encapsulation and delegation,
reusability is achieved with the notion of class inheritance. Subclasses inherit
structure and behavior of their ancestors by inheriting properties and opera-
tions from superclasses. Furthermore, functionality of classes can be combined
with multiple inheritance. Thus, a class inherits properties and operations from
more than one superclass. The pattern model supports the application of similar
manipulations to design patterns — Refinement and Combination.

Refinement Refinement reuses and specializes a design pattern. For example,
an abstract List can be refined to the more concrete StringList, which deals with
string items. [29] defines the refinement relationship between source and refined
design patterns: Each component of the source pattern is injectively refined
to a component of the refined design pattern using inheritance. That means,
refined components inherit properties and operations from source components.
The component structure of the source pattern is preserved. The internal part
of the refined pattern inherits from the internal part of the source pattern. The
external part of the refined pattern subtypes the external part of the source
pattern. During refinement, components, their properties and methods can be
renamed. Generally, refined patterns add functionality by implementing existing
and additional methods. Static and dynamic relationships between components
remain effective after refinement.

Combination Combination is the pattern model’s equivalent to multiple in-
heritance in the object model. A number of source design pattern are combined
to compose a more complex pattern, which unites functionalities. In this pro-
cess, key components from the source patterns are joined to one single compo-
nent in the combined pattern. A new name must be selected for the merged
component. Furthermore, attributes and operations are consolidated, that is,
either selected, renamed, refined, re-implemented or joined with other attributes
or operations of the respective source components. A combination example can
be found in figure 8 later in this paper.

As aresult, there are three ways to create a new design pattern: from scratch,
as a refinement of another design pattern, or as a combination of a number of
patterns.

5.3 The Programming Language PaL

To prove the concept of a design pattern-oriented programming model, a pro-
gramming language that supports the model has been designed cooperatively
by [6] and [29]. For comprehension of the design pattern support in CASE tools,
a short introduction to one of this languages is helpful. The PaL (Pattern Lan-
guage) language from [6] has actually been implemented. With the help of the
Language Development Laboratory (LDL), the syntax was captured and the
semantics defined in form of transformation steps into source code of the Eiffel
programming language. The result is a Prolog program that is able to transform

18 5 DESIGN PATTERN-ORIENTED PROGRAMMING

a PaL source program into an Eiffel source file. To achieve this, PaL is closely
related to Eiffel and adds constructs to the language to define and manipulate
patterns. Before the syntax is presented, two other issues are discussed.

The pattern model can deal with arbitrary nesting depth, i.e. design patterns
can contain components, components can be patterns that contain other com-
ponents, and so on. However, for practical programming reasons, nesting was
confined to three levels, which are also visibility levels: a global level, the level
of all design patterns, and the level of all components inside design patterns.

The pattern model provides two ways to use a design pattern: reuse by
refinement and combination, and instantiation. However, in PaL, there is no
separation between patterns and application of patterns. Patterns are refined
and combined until a pattern represents its application.

As an example, the simple design pattern List is shown. A refinement step
is demonstrated with the definition of the well-known pattern Composite based
on the List. The example is taken from [6].

pattern PLIST
creation make

component LIST
creation make
feature make is ...
feature add(an_item: ITEM) is ...
feature delete is ...

end —-- component LIST

component ITEM

creation make

feature make is ...

feature next: ITEM is ...

feature set next(an_item: ITEM) is ...
end -- component ITEM

extern feature make is
do
!'1the_ list.make
end -- make

intern feature the_list: LIST
end -- pattern PLIST
Figure 1: PaL Source for List
The primitive design pattern List (actually PLIST, see figure 1) consists of

2 components: Item and List. The properties and operations of those compo-
nents are self-explaining. The internal pattern attribute the 1ist contains a

5.3 The Programming Language PaL 19

reference to an instance of a List component. It is initialized by the external
creation method make.

PLIST

ITEM

LIST

next

cursor

set_next(| TEM)
make

first

et

el

add(I TEM)
delete
is_not_valid
is_empty
next_item
prior(ITEM)
rewind
make

make

PCOMPOSITE

COMPONENT

next

PARAM

sel_next(COMPONENT)

make
—~_. _ | operation(PARAM)

e
~
-

LEAF COMPOSITE

operation, first

operation(PARAM)

make, add, de

operation(PARAM)
operation_items(PARAM

lete, get

rewind, nexi_item, prior
is_not_valid, is_empty

make

Figure 2: Refinement from List to Composite

The design pattern Composite refines the List (see figures 2 and 3). The
components in Composite are Component, Composite, Leaf, and Param. The
latter encapsulates the parameters used in component operations. Such a com-
ponent will be refined in a concrete application to contain the required param-
eters. Composite contains a list of components. Consequently, Item is refined
to Component, List becomes Composite.

In [8], it is shown that an entire application (Drewlt) can be constructed
based on design patterns. This was achieved by implementing 3 basic design
patterns (Container, List and Parameter). They were used to build a library
of patterns based on [14]. All 23 patterns from the book are implemented.
Some patterns are combined, because these combinations, for instance List and
Iterator, are used frequently. Finally, the functionality of the drawing program
has been implemented using the patterns. The applications itself is also a design
pattern, which starts the program.

The developers of the design pattern-oriented programming model see a
number of extensions to their model and its implementation in PaL: patterns as
components inside other patterns are a reasonable extension, which creates more
opportunities for pattern design. Furthermore, refinement and combination
can in certain circumstances create redundant inheritance relationships. Those
redundancies should be removed.

The authors conclude that the design process must be adapted to support
the extended possibilities of the model. In order to effectively utilize the benefits
of pattern-oriented programming, a software engineer must familiarize himself
with the pattern libraries available. The model adds more complexity to the
process than, for instance, the usage of APIs. However, application of the
pattern-oriented model increases reusability of software components and im-
proves maintainability and flexibility of the system implementation.

20 5 DESIGN PATTERN-ORIENTED PROGRAMMING

pattern PCOMPOSITE

refine
PLIST
rename
LIST as COMPOSITE,
ITEM as COMPONENT,
the_list as the_compos
end

creation make

component COMPONENT
feature operation(a parameter: PARAM) is
deferred
end
end —- component COMPONENT
component LEAF
inherit COMPONENT
creation make
end —- component LEAF

component COMPOSITE
inherit COMPONENT
feature operation(a parameter: PARAM) is ...
feature operation_items(a_parameter: PARAM) is ...
end —- component COMPOSITE

component PARAM
end -- component PARAM

extern feature make is
do
! 'the_compos.make
end -- make
end -- pattern PCOMPOSITE

Figure 3: PaL Source for Composite

21

6 Design Patterns in Object-Oriented Design

This section presents an approach to use design patterns during object-oriented
system design. The identification and application of patterns will be discussed.
Furthermore, it will be shown how they can be used as building blocks to con-
struct complex software systems while increasing quality and reusability of the
product.

6.1 Creation of Design Pattern Description

As written in [26], design patterns are not invented but discovered. The creation
of a pattern description represents a challenge for the designer. The following
phases can be identified in the process of pattern description development:

Pattern Mining The developer discovers a recurring problem that has been
solved repeatedly. The essence of the recurring solution has to be characterized
and put into words.

Pattern Writing The designer chooses a suitable pattern format and writes
a pattern description including situations when the pattern can be applied and
properties of the solution.

Shepherding Another person with the role of a shepherd reviews the pattern
description with the author in form and content. Generally, multiple revisions
are required. A recommendation is given pro or against review in a writers’
workshop.

Writers’ Workshop A group of equal authors reviews the description. Mem-
bers underline good elements and criticize form and writing performance.

Author Review The author reviews the description according to recommen-
dations. The revision can be either reviewed in another workshop or published.

Pattern Repository Respected publishers keep pattern descriptions in on-
line archives. A selection of them is used to compile future pattern books.

Anonymous Peer Review Final design pattern review is anonymous and
focussed on technical content.

Pattern Book Publication Patterns are published in books such as the
PLoPD series (eg. [10, 16]) or others. Thus, developers study pattern catalogues
and apply patterns to their systems.

22 6 DESIGN PATTERNS IN OBJECT-ORIENTED DESIGN

6.2 Application of Design Patterns

In section 2, the software engineering process for object-oriented systems was
explained. The results of object oriented analysis were a static model, for in-
stance in the form of a class diagram for relevant business or other core classes,
and a dynamic model, which could be described by object interactions and state
machines.

The design of a software system adds further complexity. In addition to busi-
ness classes, the system is extended with a user interface, interactions facilities,
data management and other properties that are required for every real-world
software system. Flexibility and quality are of paramount importance in system
design. Specific functionality, components and complete subsystems must be
kept separated from each other to enable their exchange in the case of updated
requirements, performance demand or to integrate third-party solutions. This
represents one of many reasons to utilize design patterns during object-oriented
system design.

Based on results from analysis, design refines the system specification. In
particular, pattern oriented design requires a number of steps to be executed
(compare also [27]). As there is always interaction between analysis and design,
the following steps cannot clearly be associated with either phase.

Identify Classes Requirements specification and analysis provide a class
model with suitable class names.

Identify Responsibilities and Interacting Classes Every class provides
a set of services. These class responsibilities form the basis for interactions
between classes or their respective objects. The dynamic model contains this
information. It can be represented with textual description or, more formal,
more visual, and more detailed: in form of interaction and sequence diagrams.

Identify Class Groups and Interactions Based on class interactions,
classes can be grouped into collections. These collections have different sizes,
one class is typically participant in a number of class interactions and, therefore,
class groups. For every class group, the interactions within the group as well as
the characteristics of the group are to be identified.

Abstract Group Interactions and Pattern Identification The group
interactions and characteristics from the last step are to be restated at an ab-
stract level. Abstract interaction descriptions are derived, which do not refer
to concrete class names but represent the nature of the object and/or class in-
teraction. These descriptions can be compared with existing design patterns.
The developer needs to identify the patterns that match the interactions and
characteristics. To support this process, profound knowledge of available pat-
terns is required. Furthermore, the use of an efficient retrieval tool that contains
descriptions and examples of a library of design patterns is recommended. With

6.2 Application of Design Patterns 23

help of keyword and full-text search, the developer is assisted in search for a
pattern that reflects the interactions and responsibilities.

Pattern Application and Rough Design For every pattern identified, the
developer has to introduce new classes or remove existing classes from the class
diagram, based on the pattern structure. Names for the pattern components
are to be found, roles are identified. It might be advisable not to apply the
pattern in its original structure, but to reduce flexibility by changing or removing
components. These alterations need to be well documented to restore original
functionality if required. In case there exist more than one pattern which affects
the same class, one should try to integrate both patterns. If patterns cannot
coexist, a selection between different approaches to solve a problem will have
to be made. The developer has to value each solution and decide according to
priorities. In [27], it is suggested to calculate the tradeoff for every rough design.
This can be done by calculating a quantitative measure of four characteristics,
namely coding effort, static and dynamic adaptability and performance, and
adding the values for each design solution. Based on the results, one of the
designs is chosen.

Detailed Design After deciding which pattern to apply, attributes and op-
erations from pattern classes as well as relationships between classes are added.
The rough design is refined and, eventually, includes all required properties from
the design pattern.

Application of Patterns to Meet Requirements The approach that has
been presented presumes that the developer has already designed a detailed
class model that can then be extended to reflect design pattern structures. The
situation will be different if the developer has only a vague vision of the system
to be created. However, the requirements specification might demand certain
properties, such as exchangeability of algorithms or the separation of data model
and representation.

Consequently, the developer will search the pattern catalogue for a solution
that can be applied in this particular situation. As it was explained before,
retrieval tools will support this process. As a result, a selection of patterns
is found that implements the required properties. In the example mentioned
above, this could be the patterns Strategy or Model- View-Controller. The next
step is to build the structure of the class model according to the pattern.

Instead of applying the pattern to supplement the analysis class model, sys-
tem classes are arranged to bring a pattern to life. However, such distinct
separation can hardly be found in reality: The developer combines business
classes and a design pattern: Both are rearranged to fulfill the requirements.

Granularity The pattern application in object-oriented design as it is de-
scribed here can be applied at any level. On one side, architecture design can
be improved with design patterns. As for architecture design, specific require-
ments are generally the starting point that demand a particular system struc-

24 6 DESIGN PATTERNS IN OBJECT-ORIENTED DESIGN

ture. Architectural patterns such as Model- View-Controller are applied at this
stage. Interaction participants are larger entities such as subsystems or compo-
nents. The abstract pattern is refined and adapted to the particular situation
in which it is used. The process of refinement in pattern-oriented design will be
explained in the next subsections. On the other side, detailed implementation
design is supplemented with design patterns. Interactions are typically modeled
between classes. Refinement and combination of patterns represent the methods
of pattern application.

Static and Dynamic Pattern Aspects Object-oriented design with pat-
terns so far has mainly dealt with the static model. Class diagrams, attributes,
operations and relationships were discussed. However, design patterns cannot
be reduced to their class diagram. For many patterns, dynamic behavior cre-
ates their advantage over conventional solutions. There are reasons for the focus
on static aspects: First, graphic representation of static aspects is easier for a
designer. Drawing a class diagram requires less effort than the layout of an
interaction diagram. Second, and more important: The information from a
class diagram can be transformed almost automatically into source code of a
programming language.

In contrast, interactions modeled in a sequence or interaction diagram doc-
ument design solutions, but they cannot be directly transferred to source code.
However, as it is pointed out in [19]: Although the creation of interaction dia-
grams is one of the most time-consuming (and worthwhile) steps, the “assign-
ment of responsibilities and development of interaction diagrams is the most
significant creative step during the design phase”.

To summarize, dynamic behavior is an important part of a pattern. Thus,
pattern application means that static and dynamic aspects of the system change.
These changes can be represented with diagrams, but the actual implementation
profits only indirectly from it. The programmer uses diagram information to
implement class behavior. The second part of this thesis also demonstrates how
dynamic aspects of design patterns can be represented with CASE tools.

6.3 Patterns as System Components 25

6.3 Patterns as System Components

After explaining the general usage of design patterns during object-oriented
analysis, this section introduces a design concept with patterns as components
that are combined to construct complex software systems. First, two approaches
by other authors are presented'. Following, an approach based on the pattern
model for programming languages (see section 5.2) is introduced.

6.3.1 Explicit Representation of Design Patterns in FACE

Meijler et al. present in [21] a model of pattern development and applica-
tion called FACE. The name stands for Framework Adaptive Composition
Environment. It intends to bridge the gap between high abstraction level de-
sign and lower level implementation, which emerges when automated source
code generation from a design pattern definition conflicts with “hand-made”
changes. This should be achieved by supporting incremental development using
frameworks at the abstraction level of design patterns. The pattern framework
development is clearly distinct from application modeling and development. Im-
plementation will be hidden, modeling is just a matter of defining the roles and
relationships of classes in pattern-specific terms. For example, in the abstract
factory pattern, a factory class must be specialized by specifying its creation
operations and specifying which creation operation instantiates which product
class.

Schemas The application developer composes a model called schema. It con-
sists of classes and their roles in the pattern, operations and the roles they play
in the pattern, relationships between classes and /or operations, and parameters.
When creating such a schema, the application developer is said to instantiate the
pattern. The primal schema consists of a basic set of abstract classes and their
relationships. It is cloned and becomes the kernel of the instantiation, which is
then extended by defining concrete classes with roles and operations, creating
corresponding relationships and specifying necessary parameters. Patterns can
be seen as “mini-frameworks”, which do not have a standard implementation,
but must always be adapted to the specific usage.

The concept of a FACE schema is related to the concept of a class-diagram
in an object-oriented modeling technique. A graphical notation similar to OMT
[28] is used. Parts of a schema are called components. In a pattern instan-
tiation diagram, there is a separate component that indicates, which pattern
has been used. It contains references to the most important abstract classes of
the pattern. These classes are called class-components. Major operations and
relationships with a context-specific runtime meaning are transformed into ex-
plicit components of the schema. Class-components are typed corresponding to
the role they play in the pattern. The schema only makes aspects explicit that
are relevant, others are not shown. Internal structure is hidden. The definition
of the meta-schema of a pattern is a separate process that will in general be

L Although the approach in this paper has been developed independently from [21] and [31],
the author acknowledges their earlier work

26 6 DESIGN PATTERNS IN OBJECT-ORIENTED DESIGN

executed by a different developer. Every class-component in the primal schema
is an instance of a metaclass-component in the meta-schema. This is also true
for all schema components.

An interesting aspect is how the parameterization and linking of class-
components and relationship components may lead to the corresponding run-
time behavior of the objects. This is achieved with an interpreted approach
where the schema at runtime is represented explicitly with objects that stand
for the class-components and relationships. Class-components are objects but
they function as classes, in the sense that they can be requested for instances.
Instance objects will query the objects in the schema to adapt their behavior to
the parameters.

To summarize, FACE introduces a model for pattern meta-schemas. These
mini-frameworks are developed by experienced designers and can be applied by
application developers. Patterns are thus seen as separate components, that
become parts of the system. The authors of [21] agree that visual development
support is required to efficiently develop patterns and support their application.

6.3.2 Pattern Oriented Frameworks

Yacoub and Ammar present in [31] an approach for constructing object-oriented
design frameworks using design patterns as building blocks. Architecture of
frameworks is expressed with pattern diagrams. Furthermore, the authors pro-
pose a development process that expresses the framework in two design levels
— a pattern diagram and a class diagram. It is shown how frameworks are
instantiated.

Pattern-oriented frameworks are white-box frameworks. The framework user
has to understand the design as interacting patterns (pattern diagrams) to in-
stantiate the framework in the application. Application specific parts will be
implemented by the framework user in a particular application.

Diagrams Pattern diagrams are used to describe the framework in terms of
subsystems, design patterns and associations. In addition to well-known UML
elements such as classes and associations, these new elements are introduced:
Internal subsystems refer to independent groups of patterns that collaborate
to fulfill a set of responsibilities in the framework. In contrast, external sub-
systems are not part of the framework. Pattern associations (dependencies)
are relationships between patterns. At a later stage, they are refined by trans-
lation into class associations between two classes of communicating patterns.
Subsystem relationships are general dependencies between subsystems. Finally,
design patterns are represented as rectangular boxes with pattern name and
type. Type refers to the name of a known documented pattern that is applied,
e.g. “SearchStrategy : Strategy”.

Development Process The framework development process starts with sys-
tem analysis. Subsystems are identified and the requirements of each subsys-
tems are studied. Candidate design patterns are chosen. Each subsystem is

6.3 Patterns as System Components 27

represented in the form of design patterns and associations — as a pattern dia-
gram. The framework is built by gluing design patterns. The top-down design
approach proceeds with pattern instantiation. Patterns in each subsystem are
expressed in terms of their collaborating classes. Classes are renamed to have
meaningful names in the particular context. Next, reduction eliminates repli-
cated abstract classes that have appeared because the same pattern type has
been used in more than one subsystem. The grouping step merges concrete
classes together depending on their interaction and responsibilities.

Framework instantiation is distinguished between pattern-level and class-
level instantiation. Using pattern-level instantiation, a framework user instan-
tiates individual patterns into classes and carries out reduction and grouping
steps. Users need to map high-level associations between patterns into class
associations. Alternatively, with class-level instantiation, the framework users
instantiate the reduced class diagram.

To conclude, the pattern level represents a design layer higher than class
diagrams. Generic frameworks constructed based on patterns as components
can be used to design applications. Architecture designs based on patterns can
be reused since they provide a high level of abstraction. Thus, development
time and effort is reduced. Formalization of the visual presentation for patterns
and their interfaces is required, as well as tool support for pattern diagrams.
The authors of [31] imagine a tool that integrates pattern diagrams with a class
diagram view to instantiate patterns and to facilitate the reduction and grouping
process.

The approach in this thesis is closely related to the pattern oriented frame-
works described before. The concept of patterns as components to construct
complex systems is also pursued here. Furthermore, the elements used and
their graphical notation in diagrams represent a reasonable starting point for
further refinement. However, the development model in this paper differs: It
does not distinguish between a framework (pattern) level and an application
(class) level. Transition from an abstract pattern taken from a pattern book to
its application in a concrete application can and, commonly, will be executed
in a number of steps. That is, multiple iterations of the refinement/application
process are supported. Thus, a pattern can be refined and combined several
times before the final pattern is constructed. Details are explained in the next
section.

6.3.3 Patterns as Model Elements

Previous sections have already introduced the notion of design patterns as com-
ponents. This section will summarize their representation and properties.

UML Notation for Design Patterns Effective usage of design pattern re-
quires graphical representation and manipulation tools. UML has become the
standard language for software engineering. Therefore, it is unsurprising that
it also provides model elements to visualize design patterns [30]. It is suggested
to use an element, Collaboration. Collaboration refers to complex behavior that
can only emerge if elements cooperate. It is represented in a class diagram with

28 6 DESIGN PATTERNS IN OBJECT-ORIENTED DESIGN

Class1 — role o
\\\\7/ . \\\
« Design Pattern)
- A\ //
roe_----""[S R
o= Z-role
Class2 Class3

Figure 4: Collaboration/Design Patterns-Notation in UML

a dotted ellipse that contains the name of the pattern. Arrows point from the
ellipse to classes that participate as components. They are supplemented with
role names. Figure 4 shows an example taken from [23].

UML documentation also correctly notes that design patterns involve many
nonstructural aspects, such as heuristics for their use and lists of advantages and
disadvantages. Such aspects are not modeled by UML and may be represented
as text or tables. Moreover, the bottom-up approach used in the UML notation
guide does not show a pattern as a separate design component.

Static Elements The following elements of the static model must be dis-
played in a design pattern diagram:

e Design Pattern — container with name
e Pattern Interface — public pattern features

e Components — participating classes

Association and Inheritance — relationships between pattern components

Pattern Associations — relationships (dependencies) between patterns

The diagrams developed in [6] (figure 2) provide these features. Patterns are
represented as rectangular boxes with their name in the upper frame and the
pattern interface in the lower frame. In the main frame of the pattern, the
component structure with classes and their relationship is shown. Standard
UML notation is used for these features. Pattern associations are represented
with dotted arrows between patterns. They refer to refinement and combination
relationships.

Pattern diagrams from [31] differ in that they also provide a top-down view
on frameworks including patterns. Framework views include external and in-
ternal subsystems that are connected by dependency relationships. Patterns in
turn enclose a type and associations with other patterns. These distinct proper-
ties support the two-level concept of pattern-oriented frameworks. Instantiated
frameworks are represented with class diagrams, which contain original patterns
as dotted line around their components. The reduction process removes these
frames. Eventually, the final class diagram does not contain pattern references.

6.4 Refinement and Combination 29

Dynamic Elements In addition to static aspects that are described with
class diagrams, design patterns consist of dynamic aspects. UML provides dia-
grams and elements for their representation. Interaction diagram is the collec-
tive term for these 3 types of diagrams provided: sequence diagram, collabora-
tion diagram and activity diagram.

A sequence diagram shows a set of interactions between a set of selected
objects in a certain situation (context) with emphasis on chronology. In com-
parison, a collaboration diagram shows a set of interactions between objects in
a context with emphasis on the relationships between objects and their topol-
ogy. Sequence and collaboration diagrams provide different views on the same
sequence of interactions. An activity diagram is a special kind of state diagram
that consists predominantly or exclusively of activities. It specifies either the
sequence of a single operation or a work flow, that is, a sequence in which several
objects participate.

It has been explained earlier that, in contrast to class diagrams, interac-
tion diagrams only have indirect value for the developer. Their development
determines roles and responsibilities of classes and objects. Consequently, im-
plementation of operations follows these scenarios. Interaction diagrams are
object based. That means that interactions and collaborations between objects
are shown.

Non-formal Elements Design patterns consist of more than class structures
and collaboration diagrams. Textual documentation with description, advan-
tages and disadvantages, usage scenarios, and keywords for pattern retrieval
are important components of a design pattern. Consequently, a design pattern
description must provide room for these elements.

Properties A pattern becomes an identifiable component of the system dur-
ing object-oriented design. In combination with its components, a design pat-
tern represents a self-contained entity that provides an interface to its envi-
ronment. Its components collaborate to fulfill pattern’s responsibilities. Design
patterns interact with classes and other design patterns. In addition to dynamic
interaction between patterns, they can also be statically combined and appear
as a single, merged, entity. The next subsection recapitulates refinement and
combination of design patterns in the context of object-oriented design.

6.4 Refinement and Combination

Design patterns taken from catalogues like [14] cannot be copied directly into an
application model. The process of pattern application involves customization
and specialization, as explained in section 4.4. Classes are added, pattern com-
ponents and operations are renamed, interactions between classes are identified.
The pattern model used in this paper does not strictly distinguish between pat-
tern and application level. Transition is a continuous process between these
levels.

30 6 DESIGN PATTERNS IN OBJECT-ORIENTED DESIGN

Refinement The process of completing and extending patterns, renaming
components, renaming and re-implementing component and pattern features is
called Refinement. The foundation is provided by basic patterns such as List
or Container. Patterns from pattern catalogues, such as Composite, are either
base patterns by itself or are refinements of first-level patterns. For example,
Composite can be designed as a refinement of the Container pattern. Further
steps specialize the pattern. Reuse of refinement steps results must always be
kept in mind. Therefore, the designer has to find the right granularity of steps.
Eventually, a structure is developed that has all properties for the concrete
application. This final pattern is part of the application and will be instantiated
just like classes are instantiated at runtime.

Combination Multiple inheritance between classes merges responsibilities
and properties of two or more classes. Objects of these classes possess at-
tributes and methods from their original classes. In addition, new properties
and operations can be added. The respective equivalent of multiple inheritance
for the pattern model is Combination. By combination is meant the process
of joining several patterns and thus constructing a new design pattern. This
product integrates responsibilities and functionalities of its base patterns.

A number of manipulations can take place during a combination step. Since
combination relates to refinement like multiple inheritance relates to single in-
heritance, obviously all refinement transformations are also allowed for com-
bination. If no changes are made, the union of components from all original
patterns will form the set of components for the new pattern. Components can
be merged to form a new component. By default, properties and operations of
the two or more original components are combined. Alternatively, individual or
all properties and operations can be merged.

A special case is self-combination. This refers to combining a pattern with
itself. The application of this opportunity should be explained: Basic design pat-
terns are generally developed with a minimal structure. For example, the Com-
posite pattern in its basic form only provides a single Leaf component. How-
ever, a concrete application will certainly require a number of concrete classes
to fill the composite. In order to create a modified Composite pattern with 3
leafs, the designer uses 3 composite patterns. Class components Composite and
Component are merged completely, that is, all their attributes and operations
are merged, too. Their names might be adapted for the concrete application.
The Leaf components are also renamed, but continue to exist as separate com-
ponents. All of them are in an inheritance relationship with Component (see also
example in figure 27). Other applications of self-combinations could be found,
if an attribute or an operation should be multiplied. In that case, the identical
components are merged together including all but the one feature that is to be
replicated. The replicated feature has to be renamed to reflect its contextual
meaning.

Combination and self-combination open many opportunities for creative pat-
tern design. It was shown that some patterns can be combined very naturally,
such as List and Iterator. More examples including a complex application have
been developed in [8].

6.5 Review 31

6.5 Review

This pattern model is suitable for patterns that can be expressed with class
diagrams, for example the GoF patterns. In contrast, patterns whose essence lies
in more abstract principles cannot be applied with this approach. Examples can
be found in the General Responsibility Assignment Software Patterns (GRASP)
from [19]. Objectives and principles such as encapsulation and distinctive roles
are important design guidelines and can thus be called patterns, but they cannot
act as system components due to the lack of a self-contained structure.

The question remains: Which influence will pattern-oriented system design
have on the quality of software systems? Further studies are required to provide
definitive statements. Only few, academic, applications have been developed
using a pattern model. However, some observations can be made already.

On the negative side, design with patterns adds further complexity to soft-
ware engineering. Qualified engineers are required to, first, implement a library
or framework of patterns and, second, to apply, refine and combine patterns
to construct a complex application. However, a library of base patterns and
frequently used combinations and refinements will be developed by pattern
experts and provided to the end-developer similar to functional libraries and
object-oriented frameworks nowadays. Nevertheless, developers need profound
knowledge of their pattern library as well as education on the refinement and
combination process, which enables them to fully benefit from the advantages
of the pattern model. Consequently, learning effort for new developers is higher
compared to conventional object-oriented programming.

On the positive side, advantages of design patterns are fully realized with
pattern model design. Application developers can utilize best-practice solu-
tions, thus enhancing flexibility and reusability of systems. In addition, effort
of pattern implementation is reduced because base patterns can serve as tem-
plates for refinement and combination. Developers only need to supply and
implement application specific details.

The usage of design patterns to construct systems adds documentation and
increases maintainability because the properties of patterns are known to soft-
ware engineers. Therefore, patterns must be identifiable in pattern diagrams,
even after refinement and combination steps. Documentation remains an im-
portant activity. It will be supported by tools that keep track of the refinement
and combination process. Thereby, the history of a pattern can always be de-
termined.

To summarize, different approaches of object-oriented design have been in-
troduced. Finally, the pattern model was presented, which has been success-
fully applied to construct a complex application. Based on this pattern model,
pattern-oriented design utilizes the concepts of patterns as model elements and
system components, refinement and combination of design patterns.

The second part of this thesis introduces support for practical application
of the pattern model during object-oriented design: The successful CASE tool
Rational Rose is to be extended to provide design pattern support.

32

Part 11

Integration of Design Patterns
into Rational Rose

Previous sections have shown the benefits of design pattern usage in object ori-
ented design. Considering the visual nature of object-oriented concepts includ-
ing diagrams for static and dynamic properties, development of visual support
for the pattern-oriented design model is reasonable. In fact, the experience
of several authors [6, 21, 31] has shown that graphical tool assistance is nec-
essary for design and implementation of design patterns and pattern-oriented
applications. Pattern manipulation, refinement and combination is a complex
and demanding process that requires help to keep track of models and provide
well-structured documentation.

Computer-Aided Software Engineering (CASE) tools already provide soft-
ware engineers with software development assistance. Functionalities vary from
product to product. Commonly a selection of these features is available:

e Diagram (model) creation and processing

Code generation

e Reverse engineering

Team development

Central repository of models and files

CASE tools are available for structured and object-oriented software develop-
ment. Examples of object-oriented CASE tools include microTOOLS’s objectiF,
Aonix’ Software through Pictures (StP) and Rational Software’s Rose. Typi-
cally, UML notation and various diagrams are supported by current products.
However, none of the tools that have been investigated provides design patterns
support, although design patterns have gained popularity a few years ago. One
of the reasons could be the lack of a clear UML notation guideline for pattern
representation. The main goal of this thesis has been to develop a concept of
pattern integration in object-oriented CASE tools, in particular Rational Rose.

Rational Rose Rose is a product of Rational Software Corporation®. Devel-
opment of its principles has been driven by three of the leading scientist in the
field of software development: Grady Booch, James Rumbaugh and Ivar Jacob-
son. Among other features, Rose provides support for component-oriented, iter-
ative development, an architecture based on models and diagrams, and round-
trip engineering. Since the scientists leading UML development are Rational
associates, the language is used intensively in Rose. Modeling is based entirely
on UML diagrams.

2http://www.rational.com/

33

7 Existing Approaches and Solutions

Rose does not provide design pattern support. There are no model elements or
documentation fields referring to patterns. Considering the success of patterns
in object-oriented software engineering, it is an interesting fact that Rational did
not implement pattern support, yet. However, third-party software developers
are only limited substitutes. Two different concepts will be presented before
explaining an approach based on the pattern model and object-oriented design
using patterns as introduced in the previous sections.

7.1 Blueprint Technologies — Framework Studio

Framework Studio by Blueprint Technologies® can capture and apply content,
such as code segments, components, patterns, and frameworks. It uses a
database that stores artifacts and additional information for retrieval. Frame-
work Studio provides a library of patterns from the GoF and Buschmann books
[9, 14]. Figure 5 shows the Composite pattern entry. Meta-information from

E Pattern: Composite N [=]

Author(s] [Erich Gamma, Richard Helm, Ralph Jahnsan, and J ahn Wiissides

Compogite lets clients treat individual objects and compositions of objects
uniformly. " [Gamma, E. , B. Helm, B. Johnzon, and J. Ylizsides. Design Pattems:
Elements of Reusable Dbject-Oriented Software. R eading, MA: Addizon-wesley, |

Ikt "Compoze objects into tree structures to represent part-whole hierarchies. j

Mativation Graphics applications like drawing editors and schematic capture systems let users ﬁl
build complex diagrams out of simple components. The user can group

comporents to form larger components, which in turn can be grouped to form still

larger components. The key to the Composite patkem is an abstract class that |

Knawn Thiz pattern haz been uzed on the following spstems: Almost all object-oriented ﬁl
Uses syztems uze thiz pattern. The original Yiew clazs of Smalltalk

ModelAiew/Controller used it as well as almost all user interface toolkits or
frameworks, for example, ET++ [uzed inYobjects] and Interiews [used in Styles, -

Seedbo [Chain of Responszibility. Decoratar, Flyweight, Iterator, and Wisitor pattems J

L]

Additional Content
=] For Bugine=sz Domainz

[@] any swstem with large number of whole-part object relationships
=] Salves Problems

[E] need to protect clients from knowing if an object is a whole or a part
-] Haz Benefits

gimplifies adding new parts in whole-part relationskips

simplifies the client - pemitting the client to treat whale or part objects genencally
=] Has Liabilities

B may make the design too general by minimizing type safety
+ - __| Pattern Implementation
=] Pattern Thumbnail

E Composite.jpg
=] Models

Composite

Claze | Create HTML l’5~ssocic'-tnetﬂ,—L|
Kepwords

Figure 5: Framework Studio: Documentation Window for Composite

the book such as intent, motivation and known uses is available. Furthermore,
keywords and formalized content, for example benefits and liabilities, increase

3http:/ /www.blueprinttech.com/

34 7 EXISTING APPROACHES AND SOLUTIONS

usability. These fields can be queried when the developer looks for a pattern
with certain properties or a particular application domain. In addition, every
artifact and, thus, every pattern contains a model, that is, a Rose diagram
consisting of classes with operations and relationships.

Framework Studio is a program separated from Rose. It has access to Rose
models, the developer selects classes within Rose that are to be manipulated with
Framework Studio. Following, the process of capturing and applying patterns
with the tool is explained.

Pattern Capture Capturing artifacts is not complicated. First, one typically
creates a class diagram of the pattern with Rational Rose, including attributes,
operations, associations, and documentation. Second, a new pattern definition
is entered in Framework Studio, including description, domains, keywords, ben-
efits, and liabilities. Third, one selects the elements of the pattern within Rose.
A menu command exports these components to Framework Studio. The pat-
tern editor selects classes that are required for the pattern and others that are
optional. Attributes and operations can also be marked as required or optional.
Furthermore, implementation files can be added. Files can include source code
fragments, such as sample implementations or frameworks for extensions. In
addition, supporting documents such as use cases can be appended. After final
review, a new pattern is created in Framework Studio’s repository, which is a
Microsoft Access database.

Content Hame:Observer - Mapping Rose Classes to Participants

Classes Selected in Rose Participarts
B Event Obzerver
B Reveruesink E! ConcreteObserver

- ¥ ConcreteSubject
+ B ReverueSink
+ B ReverueSource
- B Ohserver
+ B Sponzar
- B2 Subject
+ B Ewvent

B ReverueSource

HIMNT: To assign selected classes to participant
roles, drag and drop them from the Classes

Selected in Foze list to the Participant that you
want it bo be mapped to. | | |

W Use default if no classes specified

Help Cancel ¢ Back Mext »
| | | | %J |

Figure 6: Framework Studio: Observer Pattern Application

Pattern Application Applying a pattern to a concrete application is a pro-
cess guided by a wizard. The repository browser is used to select a pattern from
the library or to search description and keywords. The developer selects the pat-
tern components that shall be used if there are any optional classes, attributes

7.2 QOSES — Quarry 35

or operations. Classes from patterns can be either applied to classes already
present in a Rose model or, alternatively, new classes are created. In the first
case, the existing classes must be selected in Rose. The selection is shown in a
dialog box (see figure 6). The developer uses the dialog to map pattern compo-
nents to model classes. If no classes are selected, the pattern and its components
will be replicated exactly the same way as they have been captured. Names of
classes, methods and attributes can be modified. The final review presents the
changes to be made. Eventually, Framework Studio updates the Rose model. It
is also possible to create a new class diagram with the pattern classes.

Review Framework Studio represents a useful tool to capture, process and
reuse artifacts of object-oriented design. Model elements can be supplemented
with documentation and hints for later retrieval. Particular support is provided
for design patterns: In addition to a template of documentation suitable for
patterns, the product provides a library of well-known design patterns.

Nevertheless, some deficiencies can be observed. Although it is possible to
edit documentation and additional information of patterns, the model could
not, be altered. The reasons are probably the complex dependencies upon the
class configuration. Thus, it is not possible to correct an error found in a
pattern. Alternatively, the developer can import the pattern into Rose, apply
the changes, and re-capture the pattern.

Framework Studio does not treat patterns as separate system components.
Therefore, the pattern model concept introduced in this paper cannot be ap-
plied. Because pattern editing is not possible, refinement and combination of
patterns are not supported. Moreover, the pattern cannot be identified in the
system model after pattern application. This represents a major requirement
to improve maintainability of applications developed with patterns.

7.2 QOSES — Quarry

Quarry is a concept of QOSES? to define design patterns. It uses UML’s Object
Constraint Language (OCL, see [30]) to define patterns that can be used to gen-
erate designs, documentation, and code. The user of the design pattern selects
the model element, which the design pattern should be applied to. Quarry takes
that model element and generates the corresponding model elements according
to the design pattern definition. It is also possible to simplify enforcement of de-
sign standards. For example, company design standards might require that all
classes must have a debug_flag attribute. The developer can create an “OCL
pattern” and apply it to all of the classes in the model.

Quarry regards patterns as rules that can be applied to a class or a set of
classes (input) and create an updated class or pattern (output). UML elements
are used to define the pattern: classes, methods, attributes, states, transitions,
messages, objects. UML’s OCL, which typically defines constraints for model
elements is used here to select the context of the pattern element and define
property names. Figure 7 shows the application of the Singleton pattern to

4http://www.qoses.com/

36 7 EXISTING APPROACHES AND SOLUTIONS

context self: self.name.concat(Singleton”)
$ 'thelnstance' : self.name.c oncat(Singleton”) = 0"

self.name.concat{’Singleton")()

‘getinstance'()
’ Pattern Class \
-Fnobar FoobarSingleton
= 5% § thelnstance :FoobarSingleton =0
Input Class & FocharSingleton)
gefinstance()

Output Class

Figure 7: Quarry: Application of Singleton

a class using a pattern definition in OCLS. The context keyword defines the
context for the definitions that follow. In the example, self refers to the input
element. Class and attribute names are derived from names of input elements.
All OCL expressions should resolve to character strings.

In another example that is not shown here, a Model- View-Controller pattern
is presented. The definition of all classes (Model, View, Controller and Observer)
is based on one single source class. Thus, pattern application to this class creates
a set of four classes including relationships.

The process of pattern definition starts with prototyping the pattern in
generic terms using UML. Next, the context is defined for each element in the
pattern. Finally, generic terms are replaced with OCL expressions that recreate
the pattern based on its context.

Review Authors of Quarry have provided Rose integration. Thus, it is pos-
sible to apply the Quarry Generator to a selected class. For the two examples
mentioned earlier, OCL definitions and models are available.

The usage of OCL as a template language to define pattern elements includ-
ing class definitions represents an interesting approach. However, Quarry is a
limited solution. Only a small number of patterns can be derived from a single
original class. In contrast, most patterns generally integrate different classes in
a flexible way. The transformation of a class into a singleton might be reason-
able, but it is not possible to create the Abstract Factory pattern from a single
class while providing understandable names.

Consequently, Quarry can only be applied to a fraction of patterns. For
others, a pattern definition can be created with OCL. However, this definition
will be limited to recreating the pattern template without providing naming
support for classes, attributes or operations.

5Example taken from [25]

7.3 Limitations of Existing Approaches 37

7.3 Limitations of Existing Approaches

Two approaches have been presented that pursue different concepts of integrat-
ing design pattern support with the Rational Rose CASE tool. Although they
provide interesting details, several limitations can be observed that will prevent
widespread application.

Integration with Rose Developers look for an integrated development envi-
ronment. Additional programs require additional training and support. There-
fore, a solution would ideally be fully integrated within Rose or would be a
seamless extension. Definition, manipulation and application of patterns should
be executed within Rose. Unfortunately, Rose does not provide full access to
its internal data structures and menu options.

Patterns as System Components The design approach based on design
patterns presented in this paper understands patterns as building blocks of
systems. Tools should support this concept by providing patterns as model
elements. Existing tools can create patterns, but identification of patterns in
program design is not possible. This reduces comprehensibility of program
design.

Refinement and Combination Editing patterns to correct errors and to
increase usability, functionality or to adapt a pattern for a particular application
is a major requirement. The pattern model approach understands the refinement
and combination of pattern as the essential system construction process. A tool
must support it by displaying the patterns to be edited.

It is understood that Framework Studio’s functionality comprises more than
pattern management. Nevertheless, a Rose add-on designated for design pat-
terns is required. The next section presents a concept for such an extension to
Rational Rose.

38 8 INTEGRATION CONCEPT

8 Integration Concept

This section proposes a concept that integrates object-oriented design using
patterns with Rational Rose. Technical or organizational conditions do not
limit this approach: full control of Rose’s internals is assumed. Thus, this
section presents a solution that could be implemented by Rational developers.
In contrast, the next section (9) presents a prototypical implementation limited
by the interface provided by Rational to access Rose’s internal structures.

8.1 Model Element Pattern

Section 6.3.3 presented patterns as model elements of object-oriented design.
Notations from UML standard and other authors have been compared. It has
been concluded that the graphical notation of patterns must include patterns as
a container of pattern elements, an interface, and relationships among pattern
components and between two patterns.

Static Aspects In addition to the already existing static elements Package,
Class, and Interface, a new model element Design Pattern will be added to
Rose. It carries a name and may or may not be part of a package. A pattern
in Rose is a container for components, similar to a package. Classes and in-
terfaces can be pattern components. It may also be possible to have patterns
as components inside other patterns. However, this extension adds unnecessary
complexity to the model. The pattern model provides combination as a means
of pattern cooperation. Associations and inheritance relationships complete the
static model of the new pattern element.

The Pattern specification will include a detailed description as present today
in pattern catalogues. Potential documentation fields are motivation, applica-
tion, domains, benefits, liabilities, consequences, examples, and related patterns.

Patterns are related to packages. Their representation in Rose will be simi-
lar. The model tree includes pattern as structuring elements with its members:
components and relationships. Each pattern will have at least one class dia-
gram that shows pattern structure. Standard UML representation is used. A
new type of diagram, the Pattern Diagram shows patterns and relationships
between them. These relationships include associations, refinements and com-
binations. Thus, the development of the pattern model and the architecture of
the system is displayed.

Dynamic Aspects The importance of documenting dynamic aspects of de-
sign pattern has been explained before. Therefore, it must be possible to create
collaboration, sequence, and activity diagrams for a pattern and its components.
These diagrams document cooperations and interactions of class-components.
They support developers with detailed design, because responsibilities and inter-
faces of components are identified. Furthermore, interaction diagrams simplify
implementation of pattern classes with object-oriented programming languages.

8.2 Working with Design Patterns 39

8.2 Working with Design Patterns

Handling patterns with Rose should fit into Rose’s model-diagram-architecture.
This also means that patterns are displayed and manipulated in diagrams. This
subsection illustrates development of and with design patterns in Rose. An
example accompanies the description of design pattern handling. Creation,
editing, refinement, and combination will be covered.

8.2.1 Creation

Patterns can be created using the menu bar or the context menu of packages or
patterns in the model tree view, or in a diagram presentation. The command
creates an empty design pattern without components at the current level, that
is, as part of the currently selected package.

Example For instance, a new pattern is created in an empty model. It is
immediately displayed in the model browser. It can be renamed to List. This
pattern serves as an example for this and the next section. In addition, the
system creates a pattern interface that contains public operations and properties
of the pattern. Furthermore, a class diagram for the pattern components is
created. Initially, it is empty or contains only the interface component.

8.2.2 Editing

Pattern properties and components can be edited similarly to packages: either
the model browser or diagram views are used. Changing the specification and
documentation of the pattern itself is started by selecting a command from
the pattern’s context menu. A dialog would be displayed that shows pattern
properties.

Pattern components are edited as if they were member classes of a pack-
age. Consequently, components are added by selecting a command from the
menu bar or the pattern’s context menu. They are edited using standard Rose
tools. Attributes and operations can be added and changed, specification and
documentation can be edited.

Interaction diagrams are added accordingly. Pattern components and their
instantiated objects participate in these diagrams. Interaction diagrams docu-
ment pattern’s behavior in certain scenarios. Therefore, a number of different
diagrams is required to describe a pattern in detail.

Example The List example is resumed with adding 3 components and the
interface to the pattern®. Interface and components are added to the class dia-
gram. Next, associations are created between the components. A sequence dia-
gram shows interactions between component objects when an element is added
to the list.

6Screenshots are found in the next section, which covers the prototype implementation.
See also figure 13

40 8 INTEGRATION CONCEPT

8.2.3 Refinement and Combination

The refinement and combination process represents the core of the pattern
model. Although it has been shown that pattern-oriented programming is fea-
sible without graphical tool support (see [8]), assistance by CASE tools can
greatly simplify development and management of design patterns.

The difference between refinement and combinations is the number of source
patterns that participate in construction of a new design pattern. With refine-
ment, one pattern is edited toward a particular domain or application. This can
be achieved by editing a pattern’s properties, and adding or changing pattern
components. Combinations refers to the creation of a pattern based on a num-
ber of source patterns. The result integrates functionality and, thus, compacts
system design. However, flexibility might be lost during this process.

Combination and self-combination represents a challenge to CASE tools.
Essentially, a number of model elements are to be merged into one. Several
requirements are taken into consideration:

Documentation and Specification Information from documentation fields
cannot simply be merged. The developer must review description, keywords
etc. from source pattern and use this information to compile documentation for
the combination. Rose can support this process by showing source documenta-
tion in different windows and including it in the documentation of the combined
pattern.

Updating the pattern’s specification could be supported similarly: The sys-
tem provides a default taken from one of the source patterns. By displaying
specifications of other participating patterns, the designer is supported to cor-
rectly and completely specify the new pattern’s properties.

Components By default, the component set of the new pattern comprises
the union of component sets of all source patterns. Mathematically, it can be
seen as a bag. That means, it can contain more than one exemplar of the
same component after a combination of pattern with identical components or
self-combination.

The pattern designer has several options to change the default component
setup. Components can be combined, that means, merged. Generally, only
components from different source patterns are allowed to be merged. The num-
ber of combined components is not limited to 2, in rare cases where more than 2
patterns are combined it might be required to merge more than 2 components.

By default, the combined component contains all attributes and operations
from its source components. Nevertheless, as components in combined patterns
can be joined, attributes and operations may or may not be joined. For instance,
each of the two source components have an attribute date. It is only necessary to
have one attribute of this kind in the combined component. Deletion of proper-
ties is not supported because functionality would be reduced. Instead of deleting
it, both attributes are joined. As a result, specification and documentation of
both source attributes are sustained and semantics remains intact.

8.2 Working with Design Patterns 41

Associations of source components are preserved. The combined component
will contain all associations from its source components. Once again, associa-
tions can be joined to remove redundancies. The same applies to inheritance
relationships. Joining inheritance relationships can create situations of multiple
inheritance.

Pattern support for Rational Rose must support all these options and con-
figurations. Different possibilities can be imagined:

1. Full graphical control: The designer combines components by selecting
a number of them and choosing a menu option. Attributes, operations
and relationships are rearranged with mouse clicks. Because of the size
of patterns and the number of components, which might fill the screen,
it must be possible to selectively control the display of components and
patterns.

2. Wizard control: A wizard-like applet guides the designer through the pro-
cess and provides options and assistance. Steps are executed successively.
Graphical displays support the combination process. For instance, source
patterns their components can be shown, alternatively the new pattern
and its components are displayed.

3. Dialog control: A complex dialog shows all potential source patterns with
their components. The designer selects the patterns that should be com-
bined. The dialog displays the corresponding attributes and operations.
Attributes and operations are merged by selecting two or more candidates
followed by a menu command or button.

It is common to all 3 methods that the specification developed is eventually
applied to the model, creating a new pattern with the desired component setup.

Diagrams Interaction diagrams are associated with patterns. In case of pat-
tern combination, diagrams must be updated accordingly. Rose might support
by replacing source components with their new equivalents. Not all modifica-
tions can be executed automatically, the developer needs to review diagrams
and check their plausibility.

Pattern Interface The interface defines behavior superimposed on a pat-
tern’s components, for instance to initialize a pattern. It is implemented in
attributes and operations of the pattern interface, which are called pattern fea-
tures. The name interface might be misleading, since it is not an interface in
Rose or UML meaning. A pattern interface can be understood as a class with
an instance that serves as a proxy for the pattern: Clients do not communicate
directly with pattern components, but by using the interface.

A designated component could serve as the pattern interface in Rose. Its
attributes and operations represent the set of pattern features. Generally, one
pattern feature will provide a reference to a component instance that can be
used to access other component instances. Therefore, the interface component
contains one or more attributes of a component type, completed by a number
of operations to invoke pattern functions.

42 8 INTEGRATION CONCEPT

History The process of pattern combination and refinement creates depen-
dencies of patterns among each other. Management of changes becomes a signif-
icant task. How are changes in source patterns reflected in combined or refined
patterns? Several solutions for this problem are possible:

1. Change Prohibition: The system will prevent changes on patterns if re-
finements or combinations exist that are based on it. Consequently, no
problems of updated patterns occur. However, this greatly reduces the
flexibility of the pattern design model: It is not possible to remove known
errors from a pattern. To conclude, the restrictive handling of pattern
changes does not allow reasonable software design and development.

2. No Passing of Changes: Changes to patterns are always allowed, but
are not passed on to dependent patterns. This solution assumes greater
differences between development steps. Thus, modified patterns provide
different functionality and are in the majority of cases not affected by
errors or updates in source patterns. If modifications are required, they
must be executed manually, that is, the designer applies changes to all
dependent patterns.

3. Update Propagation: Modifications to source patterns are automatically
passed on to dependent patterns. It is assumed that changes can be re-
applied to dependent patterns, because development steps are small and a
non-ambiguous correlation can be found between source and new pattern.
A more detailed discussion of this approach follows after this enumeration
of options.

4. Alternatives: The user is given a choice between three alternatives pre-
sented. The policy is selected individually for each pattern or each re-
finement step. This options provides greatest flexibility in the face of a
variety of scenarios and configurations that are possible.

Update propagation requires the storage of information at the time patterns are
combined. At the time of combination, this information must be recorded:

e Configuration of source patterns participating in a pattern combination
(Pattern elements: pattern name, components, attributes with types, op-
erations with signatures, associations, inheritance, class dependencies).
Storage must enable simple comparison with updated pattern.

e List of applied transformations (Component combination, renaming, at-
tributes, operations, etc.)

It is assumed that update propagation is too complex and ambiguous to be
executed entirely automatically. User intervention is required to resolve ambi-
guities. To prevent unauthorized changes, the developer manually starts the
process of propagation, perhaps after one or more source patterns have been
updated. A command is executed that takes the current combined pattern as
reference. In practise, this process will run like this:

1. Compare current configuration of source patterns with the state stored at
time of combination.

8.2 Working with Design Patterns 43

2. Involve designer to resolve potential ambiguities, for instance to associate
components or their features with source elements after they have been
renamed.

3. Create list of changes on source patterns.

4. Apply changes to target pattern. Consider renaming and component com-
binations during combination step.

Rose must be extended to provide support for this scenario. A wizard-like dialog
is required to guide the developer through the process.

Example To continue the example, the List pattern is combined with an
Iterator to form the List Iterator, a pattern that provides a list as well as services
to iterate it. The example is taken from [8]. The combination is visualized in
figure 8.

PLIST PITERATOR
[mem | [uer mem || AGGREGATE | | ITERATOR |
s - - 4 :
. [CONCRETE_AGGREGATE | /| CONCRETE_ITERATOR |
/ T s 7
: 7 J‘
I T T T
| PLIST ITERATOR | i
‘f ! ¥
| mem | |rem.AcorecatE |/ | mEm_mEraTOR |
L '],
| mEm_TEMPLATE | | LIsT | [usT_EM_ITERATOR |

Figure 8: Combination List with Iterator

As can be seen in the diagram, the LIST component from PLIST is com-
bined with CONCRETE_AGGREGATE from PITERATOR. Other components, such as
AGGREGATE and ITERATOR are refined, in particular, renamed. Several opera-
tions are renamed, too, which cannot be seen in the diagram. More details are
to be found in the next section.

44 8 INTEGRATION CONCEPT

8.3 Final Result

Rational Rose is used by different developers for various reasons. Its role ranges
from documentation repository to integrated development environment with
code generation and reverse engineering. Consequently, design pattern support
should provide similar options.

Repository and Documentation Rose can be used as a pattern repository.
Thus, patterns catalogues from various books are accessible from one single en-
vironment. Retrieval tools support the designer in finding patterns with certain
characteristics. Pattern repositories can be edited and appended as appropri-
ate. Registration of new pattern requires profound knowledge of the catalogue to
avoid redundancies. Often new entries can be created by refining or combining
existing patterns.

Rose also serves as a design and documentation tool for software projects,
which use patterns. System design is executed with Rose, patterns are used
as required. Predefined patterns can easily by applied for projects, because
they are stored within the same tool. No conversion is necessary, designers can
concentrate on their main tasks — refining patterns for specific applications.

Code Generation Continuous maintenance and synchronization of the Rose
model with the actual system guarantees maintainability at a later stage. How-
ever, Rose also provides functions to automatically synchronize between model
and implementation. Source code generation is available for Java, C++, and
other programming languages. For example, for every package in the Rose
model, a corresponding Java package is created. It contains class definitions
complete with attributes and operations for each class in the package. Code
generation can be customized to a certain extent with a properties dialog within
Rose.

The developer continues development by providing method implementations.
Moreover, names can be changed, attributes or operations can be added. To
synchronize model with implementation, Rose provides functions to reverse-
engineer the updated source files. Changes are reflected by model updates.

Pattern-oriented design with Rose can provide two different options of code
generation:

1. Conventional object-oriented source code generation. Eventually, com-
pletely refined design patterns represent class packages that become pack-
ages in one programming language. Implementation continues at source
code level.

2. PaL or similar pattern-oriented source code generation. Section 5.3 pre-
sented the language which is completely based on design patterns. PalL
source can be generated with complete refinement and combination his-
tory. Implementation of operations can be supported by specification fields
in Rose. Implementation proceeds by editing Pal. source.

8.3 Final Result 45

Because the pattern-oriented design approach is based on the pattern model
that also serves as the foundation of Pal, this language is particularly suited to
be the target language. Manual code manipulation cannot be avoided though,
because completed operation implementation is hardly possible with Rose.

Example The List Iterator pattern developed in the previous example section
is actually not yet prepared for code generation, further refinement is needed.
However, for demonstration purposes, it will be used. To generate source code
for a List Iterator, the developer chooses a command from the context menu of
a pattern component. One out of two language options can be chosen:

First, the Java programming language can be selected. Thus, a package
with six classes is created. Classes will have attributes and operations as exist
in Rose pattern components. For each component, a separate file is created.
Documentation is added as comments to classes and features.

Second, PaLi can be selected. Code is generated for the current pattern and
all its source pattern, in this case List, Iterator, and List Iterator. PaL syntax is
used to express combination and refinement steps. As a result, one file contains
the pattern definition for the current and its base patterns.

46 9 PROTOTYPICAL IMPLEMENTATION

9 Prototypical Implementation

After introducing the concepts of object-oriented design using design patterns
and presenting an approach of integrating patters with Rational Rose, this sec-
tion explains the implementation of a prototype that extends Rose with pattern
support. Furthermore, the proposed usage of the new features is explained with
examples.

9.1 Extending Rational Rose

Rose provides an extensibility interface that allows users and developers to en-
hance its functionality. An interface is provided to access model elements. Thus,
existing objects can be manipulated or removed, and new objects can be added.
Access is provided via an ActiveX control or using RoseScript, a Basic environ-
ment within Rose.

Furthermore, menu bars and context menus can be extended. A text menu
file defines menu extensions. The menu file for the pattern extension is presented
in figure 9. It defines a new sub-menu Pattern under the Tools menu in Rose.

Menu Tools {

Separator
Menu "Pattern"
{

option "&New Pattern"
{
RoseScript $PATTERN_PATH\Scripts\new_pattern.ebs
}
option "&Combine Patterns"
{
RoseScript $PATTERN_PATH\Scripts\combine.ebs
}
}
}

Figure 9: Pattern Extension Menu File pattern.mnu

It consists of 2 commands to create a new pattern and to start the combination
dialog. The new menu is shown in figure 10. Rose supports extensions to the

N Pate

LCombine Patterns

Figure 10: New Pattern Menu

environment with the Add-In Manager. To create a new add-in, the Microsoft
Windows registry database is updated. Thus, the add-in is registered with its
name, menu file, and other properties. The add-in manager in Rose is used
to activate and deactivate add-ins. Figure 11 shows the file that updates the

9.2 General Concept 47

[HKEY_LOCAL_MACHINE\SOFTWARE\

Rational Software\Rose\AddIns\Pattern]

"Active"="Yes" "InstallDir"="C:\\Users\\Danko\\Pattern\\Pattern"
"LanguageAddIn"="Yes" "MenuFile"="pattern.mnu" "Version"="0.01"

[HKEY_LOCAL_MACHINE\SOFTWARE\
Rational Software\Rose\StereotypeCfgFiles]
"File3"="PatternStereotypes.ini"

Figure 11: Registry File pattern addin.reg

registry database. The second registry entry refers to a stereotype definition
file. Tts meaning will be explained shortly.

9.2 General Concept

The target of the prototype implementation was to provide tool support for
pattern oriented system design. This has been demanded by various authors
(e.g. [6, 31]) to simplify development and increase usability of the concepts.
Although it was tried to closely follow the approach developed in the previous
section, limitations prevented the implementation of more interesting ideas.

A new model element with unique properties could not be implemented,
because a fundamental extension as this is not supported by Rational Rose. As
an alternative, packages have been used as a container for pattern components.
Details are found in the next subsection.

In order to serve as a pattern repository, complex documentation dialogs
are required, which present pattern information as detailed as it is found in
pattern books. However, customized specification dialogs for pattern could not
be implemented. Structured information stored in documentation fields is used
instead.

In the works of Biinnig and Seemann [6, 7, 29], refinement and combination
is always illustrated with diagrams. This graphical notation might serve well to
give an overview of the result. However, it is not suited to execute the process.
The number of details to be adjusted during combination requires a text-oriented
dialog that displays components, attributes and operations as lists. A detailed
description is given in the next subsections.

9.3 Model Element Pattern

UML packages are defined as follows:

Packages are collections of model elements of arbitrary type that
subdivide the entire model into smaller clear units. Every package
defines a name space, that is, names of elements must be unique
in each package. Every model element can be referenced in other

48 9 PROTOTYPICAL IMPLEMENTATION

packages, but it belongs to exactly one (home) package. Packages
can contain other packages. The topmost package comprises the
entire system. [15]

In comparison to patterns in the pattern model, packages are very similar el-
ements. Patterns can contain model elements of different, but not arbitrary,
type. They do subdivide the model and define a name space. However, ref-
erencing a pattern component in other patterns is not possible in the pattern
model. Patterns containing other patterns have not been completely analyzed.
A reasonable application has not been found. Therefore, it is not yet supported
by the pattern model. Furthermore, it cannot be said that the topmost pattern
contains the entire system. In contrast, patterns are combined until the final
pattern represents the system itself.

The functionality of packages as containers for other elements enables them
to serve as pattern representations in Rational Rose. Components with relation-
ships and diagrams can be created, stored and edited effortlessly. To separate
the new pattern packages from ordinary packages, UML stereotypes are used:
Every pattern is marked with <<Pattern>>. The stereotype was added to Rose
standard stereotype list with a file listed in figure 12. Creation, management

[Stereotyped Items]
Package:Pattern
Class:PatternInterface

[Package:Pattern]
Item=Package
Stereotype=Pattern

[Class:PatternInterface]
Item=Class
Stereotype=PatternInterface

Figure 12: Stereotype Definition File PatternStereotypes.ini

and combination of design patterns is explained in the next subsection.

Components of patterns are regular Rose classes without stereotypes or ex-
tensions. Therefore, whenever it is written about pattern components, it can
be assumed that they contain all properties and features of classes.

The pattern interface is represented as a designated component of the pat-
tern. It is marked with the stereotype <<PatternInterface>>. Similarly to
the pattern model, the interface contains public properties of the pattern and
provides services to other patterns or independent classes. Properties are rep-
resented with attributes. These attributes often refer to an instance of one of
the pattern components — the starting point of a pattern structure.

Documentation of patterns can be placed in standard documentation fields
of packages. Every Rose element provides space for about 12 pages” of documen-

7 About 28000 characters equal 12 pages

9.3 Model Element Pattern 49

tation text. It is recommended to structure the documentation text to follow
standard pattern descriptions with context, problem description, solution, con-
sequences, and perhaps examples. Furthermore, references to other patterns can
be given. Keywords, benefits and liabilities complete pattern documentation.

Static and dynamic diagrams visualize pattern properties and behavior.
Class diagrams are used to show components and their relationships, includ-
ing associations and inheritance. Figure 13 shows a class diagram of the PList

Eﬂ Class Diagram: PList 7 PList

List

ltemTemplate
-anchorltem 1
:?:;ﬁgz:mt;:}ﬁrﬁem) T 1?‘setNexﬂtemTempIate(mewNe)dltemTemplate ltermTemplate)
WmakeList) FemakeltemTemplate(newTheltem : tem, newMesxtitem : RemTemplata)
i 4

+thelist

-hexttemTemplate

==Patterninterface==
PList

Srnakef) : List

Figure 13: Class Diagram List Pattern

pattern, as it is implemented in Rose. It consists of 3 components. Furthermore,
there are a number of aggregations and a class dependency between List and
Item. The pattern interface in the lower left part of the diagram contains a
reference to an instance of the List component and an operation to create an
instance of the pattern, that is, instances of its components.

Sequence diagrams are used to illustrate the sequence of messages in a certain
scenario. An arbitrary number of sequence diagrams can document different
scenarios. Figure 14 shows the addition of a new element to the list. Other types

Sequence Diagram: PList_ / Add to List

4: sethlextltemTemplate(templtemTemplate)

: ListGlient | thelist : List | templtemTemplate : llemTemplate | lastTemplate : ItemTemplate |
ListClient thelist : List templternTemplate lastTemplate B
temTemplate ltemTemplate
1: add(ter) ! : :
) + 20 makelternTemplate(tern, void) :
I setieditemTe
:l mplate{void) H

< : N } +[m

Figure 14: PList — Sequence Diagram — Add Item to List

a0 9 PROTOTYPICAL IMPLEMENTATION

of diagrams can be created. In its current version®, Rose supports collaboration,
statechart, and activity diagrams.

9.4 Working with Design Patterns

Creation Although it is possible to manually create a new pattern, a menu
command is provided to execute this task. It creates a new pattern in the
currently selected category. The default name is NewPattern. If this name is
not available, NewPatternl, ..2, etc. will be used. The pattern contains a class
diagram and an interface. Both carry the name of the newly created pattern.
Figure 15 shows the new pattern diagram with the interface. The pattern is
marked as being a base pattern in its documentation field.

E=H Class Diagram: NewPattern._ [B[=] B3

<=Patterninterfaces=
NewPattem

Figure 15: Empty Design Pattern

Refinement Development of design patterns with Rose proceeds with adding
components, and inheritance and dependency relationships. For example, the
abstract base pattern FactoryMethod is created by adding 4 classes. Figure 16
shows the class diagram.

B Class Diagram: PFactoryMethod / PFactoryMethod _ O] x|
Creator

I— Practoryhiethod | Product

ConcretePraduct ConcreteCreator

*makeCnnEreteF’rnduclO ‘facluwMelhDdO Product

ol | s

Figure 16: Design Pattern Factory Method

9.5 The Combination Dialog

The Rose dialog to combine design patterns represents the core of the prototype
implementation. It is used to select patterns for combination, merge and rename
components, attributes and operations. Its application will be explained with
an example: The Iterator pattern in [8] is implemented as a combination of the
Factory Method and a Container help pattern (see figure 17). Consequently, 2
source patterns are required. It is assumed that both patterns are available in

8Rational Rose 2000, Rose Enterprise Edition, was used for development

9.5 The Combination Dialog

i
///
J

PCONTAINER PFACTORY_METHOD
CONTAINER ITEM CREATOR PRODUCT
/ /
/
add(ITEM) \ factory_method: PRODUCT | |
remove(ITEM) \

f

CONCRETE_CREATOR

|
|
|
I | CONCRETE_PRODUCT
1
|

/ factory_method: PRODUCT |

make_concrete_product

\
|
} \ / ! s |
| NI \
s/
| \ |
‘ N : \
/o
\ A \ |
A
¥ N ¥ !
N PITERATOR .
] \
T |
P
ITEM ¥ AGGREGATE ITERATOR
I>\ !
|~ ereate_torator: ITERATOR first:)/
| | add(ITEM) next: /
\ | remove(ITEM) is_done: BOOLEAN /

current_item: ITEM

\
N
~
~

Ve

K

CONCRETE_AGGREGATE

CONCRETE_ITERATOR

create_iterator: ITERATOR

make_concrete_product
make_concrete_iterator(
CONRETE_AGGREGATE)

Figure 17: Combination to Create Iterator Pattern

o1

the Rose pattern repository. Their Rose pattern diagrams can be seen in figures

16 and 18.

EH Class Diagram: PContainer / PContainer

Container

®add(anitem : ltem)
®remavalanitam ; Item)

(D[]

Figure 18: Pattern Container

To display the dialog, the command Combine Patterns is selected from the
pattern add-in menu. A list of all available patterns is displayed on the left side
of the dialog. Below, the components from the currently selected pattern are
displayed. The developer selects the pattern that should be used and presses the
button with the arrow (>). Thus, the pattern is added to the Combined Patterns
list. Its components are displayed in the Components list below. Figure 19
displays the dialog with the 2 source patterns mentioned.

A new name for the pattern can be given in the upper text field New Pat-

92 9 PROTOTYPICAL IMPLEMENTATION

Combine Patterns
Eigting Patterns Combined Patterns Hew Pattern Mame Pattem Source
Lapers | > | |PContainer INewPattem
Master-Slave
Mediatar
Memento Show Source >
Microkermel
ModelView-Controller Components Rename Component

Observer
Fipes and Filters
PAL

PContainer. Container ICreator Use
PContainer.[tem

Prolotype PContainer. PContainer <<Patterninterfaces »

Prowy - Gamma =il o

Publizher-Subscrber PFactoryMethod, eleCreator

Reflection PFactorytdethod. Praduct

Singleton PFactoryMethod ConcreteProduct

State PFactorytethod PFactoniethod <<Patteminteface: »

Shategy erge with Component

{r;r&pﬁ;ig‘:;thod IPEnnlainEr Container j hterge Components |
g\ﬁ‘nci:a-}:'art Attributes Fiename Attribute
PContainer Usze
PP arameter I

Components: terge with Attribute
| 2l Mergevbutes |

Concretelreator X
Product Operations Fiename O peration

ConcreteFroduct
PFactorytdethod < <Path

Factarphd ethod IfacloryMethod Usze

Corvel |

Merge with Operation

I j erge Operations |
PFactorytdethad. Creator

Figure 19: Combination Dialog with Source Patterns

tern Name. To distinguish between components with equal names from different
source patterns, every component is shown with its full path name, that is, pat-
tern and component name, separated by a dot (.). For example, the fourth line
(PFactoryMethod.Creator) refers to component Creator from source pattern
PFactoryMethod. The status line at the bottom of the dialog displays the full
name of the currently selected item.

Merging and Renaming Components Development proceeds with the
combination of components. To combine (or merge) 2 components, the first
one is selected in the Components list box. The second component is selected
in the drop box directly below labeled Merge with Component. To proceed, the
button Merge Components must be pressed. Consequently, the 2 original entries
in the component list are replaced by one entry that contains the name of the
new component and its source components.

The components PContainer.Container and PFactoryMethod.Creator
are combined in the Iterator example. The components are selected as described
above, and the button is pressed. The resulting line in the component list con-
tains Container (PContainer.Container, PFactoryMethod.Creator).

By default, the name of the new component is derived from the original name
of the first source component. However, names can be changed with this dialog.
Next, the combined component should get a new name. To rename a component,
a new name is entered in the text field to the right labeled Rename Component.
After pressing the Use button, the update is reflected in the component list.

9.5 The Combination Dialog 53

The new name Aggregate is used. Figure 20 shows the component list. In it,

FCantainer. Item
Plterator [PContainer. PContainer, PFactoryMethod. PF actoyM ethod] <<Pattemint
Concretedggregate [PFactonMethod ConcreteCreatar]

Iterator [FFactorpbdethod. Product]

Concretelterator [PFactoyh ethod. ConcreteProduct]

Figure 20: Component List after Combination

two combinations can be seen in lines 1 and 3. The components in line 4, 5 and
5 are renamed. The component Item remains unchanged.

The Pattern Interface The component that represents the pattern interface
is marked with its stereotype <<PatternInterface>> at the end of the line in
the component list. It is handled like other components. There may only be one
interface per pattern. Therefore, interfaces will usually be merged if patterns
are combined.

Renaming Attributes and Operations The list boxes below the compo-
nent box contain attributes and operations for the currently selected component.
Attributes and Operations can be renamed just like components. The text boxes
next to the list boxes are used. In the example, the operation factoryMethod
from the new component Aggregate (originally PFactoryMethod.Creator) is
renamed to createlterator. This is displayed in the operations list box as
follows: createlterator (PFactoryMethod.Creator.factoryMethod). For
every attribute or operation with a new name, the name is followed by pattern
name, component name, and original feature name in parentheses.

The Definition The definition of the pattern that is being created can be
generated by pressing the Show Source button in the upper part of the dialog.
The text box in the upper right corner displays the information. The definition
of the PIterator pattern is created as follows:

=== Pattern Definition ====

PIterator

=== Pattern ====

PContainer

PFactoryMethod

=== Components ====

Aggregate (PContainer.Container, PFactoryMethod.Creator)
PContainer.Item

PIterator (PContainer.PContainer, PFactoryMethod.PFactoryMethod)
ConcreteAggregate (PFactoryMethod.ConcreteCreator)
Iterator (PFactoryMethod.Product)

Concretelterator (PFactoryMethod.ConcreteProduct)

=== Attribute Renaming ====

=== Attribute Merge ====

=== (Operation Renaming ====

54 9 PROTOTYPICAL IMPLEMENTATION

PFactoryMethod.Creator.factoryMethod|createlterator [Aggregate]
PFactoryMethod.ConcreteProduct .makeConcreteProduct |
makeConcretelterator [Concretelterator]
PFactoryMethod.ConcreteCreator.factoryMethod |
createlterator [ConcreteAggregate]
=== (Operation Merge ====
=== End Pattern Definition ====

Although the component list is exactly the same as displayed in the dialog, the
attribute renaming is handled differently. Every single line can be understood as
a renaming rule. The first line, for example, represents the renaming discussed
above. The first part before ’|’ contains the original operation path with pattern
name, component name, and old operation name. The new operation name
follows. Finally, the new component name is provided in square brackets.

Dialog Completion Assuming the pattern combination is completed, the
developer presses the OK button in the lower left part of the dialog. The
pattern definition with combination and renaming rules is presented in a modal
dialog window with the question whether to create a new pattern or not (figure
30). Processing can either proceed or return to the combination dialog. If the
developer confirms pattern creation, the definition will be used to generate a
new pattern.

Internally, components of source pattern are iterated and added to the new
pattern. Combinations and renaming rules are considered and executed. Rela-
tionships in source patterns, such as class associations, dependencies and inher-
itance relationships are recreated. They would be passed on, if source compo-
nents were combined. Documentation of the new pattern is supplemented with
its pattern definition. Finally, a class diagram is created for the new pattern.
The new class diagram for the Iterator pattern can be seen in figure 21. Notice

Eﬂ Class Diagram: Plterator / Plterator

| Item ‘ Aggregate Iterator

| I

Saddianitem : ltery F-------- > ::‘1::{%
Sremavetanitem ; ftem) ®isDone(: Boolean
%createlterator) : lterator Scurrentitern - ltern

7

Concretefggregate

Screatetterator) : ferator

Concretelterator

*makECDncretelteratnr(aCnﬂEreleAggregate ConcreteAggregate)

4l | ™

Figure 21: Final Iterator Class Diagram

that the return parameter of the createIterator operation in Aggregate com-
ponent has been automatically changed from Product to Iterator to reflect the
new component name. Attribute and parameter types are handled similarly. At
last, 4 operations should be added to Iterator. Eventually, the class diagram

9.5 The Combination Dialog 55

matches the target pattern (compare to figure 17).

Self-Combination The abstract Composite pattern provides only a single
Leaf component (see figure 22). Concrete applications require more than one

Eﬂ Class Diagram: PComposite / PComposite

Component
R Pararmeter

Soperation(aParameter : Parameten)
Composite

®add(anitern : Component)
Sremave(aniterm : Companent)

Figure 22: Composite Pattern

leaf. Self-combination can be used to clone components. In the following exam-
ple, a Composite pattern with 2 leafs is created.

First, the source pattern PComposite is added twice in the combination
dialog. Consequently, the component list contains every component of the source
pattern twice (figure 23). Only one component should be duplicated. To remove

PCompaosite. Companent
PCompaosite. PCamposite <<Patteminterfaces»
PCompasite. Parameter

PComposite Leaf

PComposite. Composite

PComposite. Component

PComposite. PComposite <<Pattemlnterfaces» Jid|

Figure 23: Component List Composite Pattern Combination — 1

the redundant components, each of them is merged with its counterpart from
the second source pattern. Next, each of the Leafs is assigned a new name, for
instance LeafA and LeafB (figure 24).

Composite [PComposite. Composite, PComposite. Composite)

Component [PComposite. Component, PComposite. Component)

PComposite [PComposite.PComposite, PComposite. PComposite] < <Patterninterfac
Parameter [FComposite Parameter, PComposite. Parameter]

Figure 24: Component List Composite Pattern Combination — 2

Merging Attributes and Operations Because components with opera-
tions, such as Composite have been self-combined, each operation is contained
twice in the operation list box (figure 25). Redundant operations are again
removed by merging operations with the same name (figure 26). For every
operation that has been merged, a line is added to the pattern definition. It
contains the new name of the operation, its source operations with pattern and

96 9 PROTOTYPICAL IMPLEMENTATION

Operations

add [PComposite. Compasite. add)
remove (PComposite. Composite.remowve)
add [PComposite. Compasite. add)
remove [PComposite. Composite.remowve)

Figure 25: Operation List Composite of Component — 1

add [PComposite. Composite. add, PCompaosite. Compasite. add)
remove (PComposite. Composite. remave, PComposite. Composite. remorve]

Figure 26: Operation List Composite of Component — 2

component name, and the new name of the component that was merged. These
are the 2 lines for the operations that were merged:

=== (Operation Merge ====

add (PComposite.Composite.add,
PComposite.Composite.add) [Composite]

remove (PComposite.Composite.remove,
PComposite.Composite.remove) [Composite]

Attributes are handled in the same way. Figure 27 shows the diagram of a
Composite pattern with 2 leafs.

Eﬂ Class Diagram: PComposite2 / PComposite2

Component
R Pararmeter

Soperation(aParameter : Parameten)

Leafd, LeafB Composite

I 1 |

$add(aniter : Component)
Sremave(aniter : Companent)

| oy

Figure 27: Composite Pattern with 2 Leafs

Example List Iterator Another complex example is presented that illus-
trates the ability of the prototype implementation. A List pattern (figure 13)
is combined with an Iterator (figure 21). The new pattern enables the traversal
of lists. Therefore, components List and ConcreteAggregate are merged. Fig-
ure 8 in the previous section presents both patterns as well as the combination
with arrows pointing from source to target components. Figure 28 shows a part
of the combination dialog that is used to execute the combination. The new
pattern diagram is shown in figure 29. A number of operations were added to
ItemOperator and ListItemOperator.

9.6 Implementation Details 57

Combined Patterns Mexs Patterr Mame:
PList |F’List\lelalor
Companents

=
Itemn [PList.Item, Plteratar. lkem)

PList [PList. PList, Plterator, Plterator] < <Pattemnlnterfaces>
PList.ltemnT emplate

PList ListClient

Itemagaregate [PlteratorAgaregate]

Itemlteratar [Plterator.lterator)

Listltermlterator [Plterator. Concretelterator]

Figure 28: Combining List and Iterator

Eﬁ Class Diagram: PListlterator / PListiterator

Itemlterator -
Item
ltermAgaregate Sfirst)
15 Snext)
“thelte Qaddy 00 peeeeeeeeed %isDone()
T Bramova) Scurrentitemi)
®createltemiterator ‘previnuso
‘\sEIefnreFirstO
Z} ®last])

List b
Badd()

‘remnveo
®makeList() Listltemlterator
-anchorlta Soreateltemiteratory [
-3 ®rnakeListiterniterator(
ltemTemplate firsto
-Ccursor ’Iasto
PesetileitemTemplate () Fnexo
P¥makellemTemplate(@previous()
PisBetoreFirst)
% : ®isDone]
-nextiternTemplate ’currem\temo

Figure 29: Class Diagram List Iterator

9.6 Implementation Details

The implementation of the combination dialog was divided into 2 parts, the user
interface and the creation of a pattern based on a pattern definition.

User Interface The dialog and its controls were created with Rose’s dialog
editor. Internally, pattern and component lists as well as list of renaming and
merging rules are kept. User interactions cause changes in these lists, which is
represented by dialog updates. Basically, the dialog enables the developer to
create a pattern definition without actually writing it. Instead, model elements
are manipulated by button clicks. The program code that controls interactions
and updates mostly contains difficult string and list management.

Pattern Creation After the developer confirms the creation of a new com-
bined pattern (figure 30), the definition created with the dialog is executed.
The implementation is concerned with parsing source patterns and recreating
its structure in the new pattern while considering combinations and new names.
Attributes and operations are handled according to the developer’s specification,
new names are used, or features are merged, that is, some features may disap-

a8 9 PROTOTYPICAL IMPLEMENTATION

Confirmation %]

Create New Pattem?

=== Pattern Definition ====
Flterator
=== Paltem ====
FContainer
PFactontdethad
=== Components ====
Aggregate [PCantainer. Container, PFactorytethad Creator]
PContainer.|tem
Plterator [PContainer. PContainer, PFactoryi ethod PFactantethod]
ConcreteAgaregate [PFactoryM ethad ConcreteCreator]
Iteratar [PFactorytethod. Product)
Concretelterator [PFactoryMethod. ConcretePraduct]
Hribute Renarnin
tribute Merge =
=== Operation Renaming ====
PF actontethod Creator factoryMethodlcreatelterstor&aaregate]
PF actoniethod. ConcreteCreataor, fFactorsM sthodicreatelterator Concretedaaregate]
PF actontethod. ConcreteProduct. makeConcreteProductimak eConcretelteratorConcretel teratar]
=== Dperation Merge ====
=== End Pattern Definition ====

Figure 30: Confirmation Dialog Iterator

pear from components.

Lists are kept to manage the mapping of components between source and
new pattern. These mappings are required to correctly recreate associations
and inheritance relationships that existed before combination. For example, if
two components were subclasses in inheritance relationships and before being
combined, the newly created component would inherit from 2 different compo-
nents.

Limitations and Problems There are a few limitations of the prototype
implementation that should be mentioned:

e Special Characters: Rose allows the usage of almost all characters that
are available in model element names. The pattern extensions does not
support (,), [,], and | in names.

e Correlation Management: In certain complex cases of self-combination, it
can happen that inheritance or dependency relationships are not recreated
correctly in the target pattern. This does not represent a restriction, since
all general cases including examples from [8] are executed as expected. If
the problem occurs, it can be corrected manually.

o Attribute vs. Association: The combination dialog supports renaming
and merging of attributes. However, attributes with class or component
type are modeled in UML and Rose using associations and role names.
Currently, no support is given in the dialog to rename role names.

9.7 Update Management

None of the concepts suggested in the paragraph about a pattern’s history in sec-
tion 8.2.3 have been implemented, yet. The definition of every pattern is kept
in its documentation field. For successful management of updates on source

9.8 Code Generation 59

patterns, the state of every source pattern needs to be stored. The implemen-
tation effort is extensive. Therefore, update management is considered the first
prototype extension.

9.8 Code Generation

Two options were suggested for code generation: the production of Java code
and the generation of PaL source code.

Java The Java add-in of Rational Rose provides a code generation utility.
It operates on classes and produces Java source files. Rose documentation is
included in the generated files. Thus, implementation templates that were pro-
vided in pattern documentation are available to the developer.

As an example, Java code is generated for the List component from the List
Iterator example in the previous section. Figure 29 contains the component
in the center. The following source code is generated, documentation is not
displayed:

package PListIterator;

public class List extends ItemAggregate {
private ItemTemplate anchorItem;
public List() {}
public void add(PListIterator.Item anltem) {}
public void remove(PListIterator.Item anItem) {}
public void makeList() {}
public ItemIterator createltemIterator() {}

This template can be used for implementation of the pattern and its components.
However, implementation artifacts in source patterns are not available as code
fragments. Therefore, developers do not profit from code development that has
been done for other patterns in its refinement history.

Pal. Implementation of Pal source generation has not been implemented, yet.
All the necessary information is available; the documentation contains pattern
history. The PaL source generation process differs from Java. The target file
will contain the pattern definition, complete with the definition of all source
patterns. The following tasks must be executed for PaL code generation:

1. Extract participating patterns from pattern definition
2. Follow pattern definition to extract all participating patterns

Generate code of base patterns used

-~ W

Generate code of other source patterns in use

5. Generate code of current pattern

60 9 PROTOTYPICAL IMPLEMENTATION

Because of the relatedness of pattern model with PalL and with Rose pattern
support, Pal generation for patterns itself is not very complicated. A script
would execute these steps for each pattern in Rose: (compare also PaL. example
in figures 1 and 3)

1. Create a pattern PatternName ... end block

2. Extract components from pattern, generate component ComponentName
. end block for each component

3. Extract features (attributes and operations) of components, generate fea-
ture blocks feature featureName is ... end

4. Use pattern interface (component with <<PatternInterface>> stereo-
type) to extract internal and external features of the pattern

5. If pattern is not base pattern without source patterns, generate block
refine SourcePattern ... end

6. Consider component combinations and new names, add statements rename
01dCompName as NewCompName to refine block

Documentation should also be considered. The contents od documentation fields
could be added to the respective elements, similarly to Java code generation.

Implementation of operations proceeds with a separate source code editor.
The next step would be to integrate code editing with Rose and to consider
changes in the implementation file during the next code generation command.
Thus, developers are able to implement operations and, at the same time, con-
tinue with pattern development and design, and add features and components
with Rose.

61

Part 111

Final Remarks

The final part of this thesis presents potential extensions to the prototype im-
plementation. Finally, a conclusion is given that summarizes the results of this

paper.

10 Future Extensions

The prototype illustrated the feasibility of pattern development with Rational
Rose. However, a number of interesting features has not been implemented, yet.

Pal. Code Generation Pal is the programming language that presented
the capacity of the pattern model in [6]. It was used to develop the Drawlt
application, completely based on design patterns. Section 9.8 presented the
steps that need to be executed to generate PaL source. As a result, Rose would
be used to visually design patterns and their relationships, refinements and
combinations. If the developer decides that the design is stable, implementation
of operations will proceed with a PaL source code editor, which could be started
from within Rose. Updates to the Rose model are reflected during source code
generation, the respective definitions are edited. Similar to the Java add-in
already present, implementation already present in the source file is conserved.

Update Propagation Section 8.2.3 presented various concepts to handle
changes to patterns that serve as source patterns in combinations. Success-
ful implementation of these approaches permits design pattern development,
which considers the dynamic nature of software development. New insights can
be applied, patterns are updated, and changes are reflected in all dependant
patterns. Without this feature, patterns must be designed perfectly before they
could be used to construct other patterns.

Diagrams Rose supports a variety of diagrams to model static and dynamic
properties of objects. Class diagrams represent static relationships between
classes, such as associations, aggregations, inheritance, and class dependencies.
Sequence, collaboration, activity, and statechart diagram are used to define
dynamic behavior of classes and its objects.

The implementation of pattern combination does currently not take over
Rose diagrams. Diagram support is limited to the creation of a new class dia-
gram that contains all components of the new pattern with their relationships.
In addition, support for existing diagrams is required. A wizard could guide the
developer through the process, because automatic takeover is not possible. The
wizard would use the pattern definition information gained from the dialog. In
addition, the developer provides new names for objects that are present in dia-

62 10 FUTURE EXTENSIONS

grams. Eventually, diagrams are generated that recreate the information from
source pattern diagrams.

Pattern Diagrams Relationships between patterns can best be visualized
with pattern diagrams. Examples were given in [6, 8, 29] and [31]. Relationships
between patterns range from general dependencies to refinement and combina-
tion. Visualizing these relations improves developer’s imagination.

Since patterns have been implemented as packages in this Rose extension,
only basic diagrams are supported be default. An example can be seen in
figure 31, which shows dependencies between packages. It should represent that
the Iterator pattern is a combination between Container and Factory Method.
Unfortunately, arrows cannot be supplemented with names.

K| Class Diagram: Logical View / Plterator [B[=] E3

1 []

<<Pattermsz <=Pattern=>
PContainer PFactoryhethod

3 A

<<Patterns>x
Plteratar

I — [

Figure 31: Class Diagram List Iterator

The implementation of pattern diagrams requires access to Rose internals.
They would show patterns with its components and relationships as well as
other patterns and relations between patterns. Commands control the level of
detail. Thus, components could be masked, and only patterns are shown.

Model Element Pattern Finally, Rose developers could add a new model
element to the system. This would require precedent standardization of de-
sign pattern in UML. Subsequently, concepts from this thesis could be applied.
However, there are no indications that Rational is developing design pattern
support.

63

11 Conclusions

This thesis has presented concepts to support design pattern-oriented devel-
opment with Rational Rose. A prototype implementation has been developed
that enables creation, filing, editing, management, refinement, and application
of design patterns. Essentially, this paper is based on the pattern model and
incorporates knowledge gained in development of the Pal. pattern language.
However, modifications and simplifications were necessary to apply the con-
cepts in Rational Rose. Further refinement of the implementation is necessary
before complete application development is possible.

Currently, Rose serves as a pattern catalogue tool. It is easy to use design
patterns in new applications. Referring to pattern refinement and combination,
the combination dialog serves well to reproduce design decisions. For example,
patterns and combinations from [8] could be grasped without problems. How-
ever, designing a pattern combination using the dialog without having a vision
of the result might be more difficult.

Extensive usage of design patterns in software development provides advan-
tages and disadvantages. On one hand, proven solutions can increase software
quality. On the other hand, pattern usage increases demands on developers,
educational requirements, and complexity of development. Similar experiences
will be made with pattern support in Rose. Although it provides advantages,
application challenges developers.

64 A GLOSSARY

A Glossary

ActiveX Control — A reusable, stand-alone software component often exposing
a discrete subset of the total functionality of a product or application. Ac-
tiveX controls cannot run alone and must be loaded into a control container
such as Microsoft Visual Basic or Microsoft Internet Explorer. Formerly
referred to as OLE control or OCX.

CASE (Computer-Aided Software Engineering) — Targets automation of soft-
ware development process. Comprises methods and processes of software
engineering for business applications and tool support by a software develop-
ment environment,.

OCL (Object Constraint Language) — Defines a language to describe assertions,
invariants, pre- and postconditions and navigation within UML models.

UML (Unified Modeling Language) — Language and notation for specification,
construction, visualization and documentation of the artifacts of software sys-
tems. Industry and Object Management Group (OMG) standard. Definition
was led by Grady Booch, Ivar Jacobson, and Jim Rumbaugh. Supported by
many tool vendors and authors. Current version: 1.3. See also [30].

RoseScript — Scripting language for Rational Rose. Provides access to Rose
model elements. Can be used to extend Rose. Related to Basic.

Source: [15] and other.

REFERENCES 65

References

[1]

[2]

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern
Language : Towns, Buildings, Construction. Oxford University Press, 1977.

Lowell Jay Arthur. Improving Software Quality : An Insider’s Guide to
TQM. John Wiley & Sons, 1992.

Heide Balzert. Lehrbuch der Objektmodellierung : Analyse und Entwurf.
Spektrum Akademischer Verlag, 1999.

Barry W. Boehm. A Spiral Model of Software Development and Enhance-
ment. Software Engineering Notes, 11(4), August 1986.

Grady Booch. Object-Oriented Analysis and Design. With Applications.
Benjamin/Cummings, second edition, 1994.

Stefan Biinnig. Entwicklung einer Sprache zur Unterstiitzung von Design
Patterns und Implementierung eines dazugehdrigen Compilers. Master’s
thesis, Rostock University, Department of Computer Science, 1999.

Stefan Biinnig, Peter Forbrig, Ralf Lammel, and Normen Seemann. A Pro-
gramming Language For Design Patterns. Informatik 99, Reihe Informatik
aktuell, Springer, 1999. Presented at ATPS’99.

Stefan Biinnig and Normen Seemann. Patternorientierte Programmierung
am Anwendungsbeispiel. Thesis, Rostock University, Department of Com-
puter Science, 1999.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture : A System of Pat-
terns. John Wiley & Sons, 1996.

James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages of
Program Design. Addison-Wesley, 1995.

W. Edwards Deming. Out of the Crisis. Cambridge University Press, 1986.

Ivar Jacobson et al. Object-Oriented Software Engineering : A Use Case
Driven Approach. Addison-Wesley, 1994.

Martin Fowler. Analysis Patterns : Reusable Object Models. Addison-
Wesley, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

Object Engineering Process (OEP) Glossar. http://www.oose.de/glossar/,
2000.

Neil Harrison, Brian Foote, and Hans Rohnert, editors. Pattern Languages
of Program Design 4. Addison-Wesley, 1999.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley, 1999.

66

[18]
[19]

[20]

[21]

REFERENCES

Philippe Kruchten. The Rational Unified Process. Addison-Wesley, 1998.

Craig Larman. Applying UML and Patterns : An Introduction to Object-
Oriented Analysis and Design. Prentice-Hall, 1998.

David H. Lorenz. Tiling Design Patterns — A Case Study Using the In-
terpreter Pattern. ACM SIGPLAN Notes, 32(10):206-217, October 1997.

Theo Dirk Meijler, Serge Demeyer, and Robert Engel. Making Design
Patterns Explicit in FACE : A Framework Adaptive Composition Environ-
ment. ACM SIGSOFT Software Engineering Notes, 22(6):94-110, Novem-
ber 1997.

Gunter Miiller-Ettrich. Objektorientierte Prozessmodelle : UML einsetzen
mit OOTC, V-Modell, Objectory. Addison-Wesley-Longman, 1999.

Bernd Oestereich. Objektorientierte Softwareentwicklung : Analyse und
Design mit der Unified Modeling Language. Oldenbourg, fourth edition,
1998.

Lutz Prechelt and Barbara Unger. Methodik und Ergebnisse einer Experi-
mentreihe iiber Entwurfsmuster. Informatik : Forschung und Entwicklung,
14(2):74-82, June 1999.

Darren Pulsipher. Defining and Using Design Patterns in Rational Rose,
July 1999. http://www.qoses.com/ruc/Quarry/index.htm.

Klaus Quibeldey-Cirkel. Entwurfsmuster : Design Patterns in der objekto-
rientierten Softwaretechnik. Springer, 1999.

D. Janaki Ram, K. N. Guruprasad, and K. N. Anantha Raman. A Pat-
tern Oriented Technique for Software Design. ACM SIGSOFT Software
Engineering Notes, 22(4):70-73, July 1997.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,
and William Lorenson. Object-Oriented Modeling and Design. Prentice
Hall, 1990.

Normen Seemann. A Design Pattern Oriented Programming Environ-
ment. Master’s thesis, Rostock University, Department of Computer Sci-
ence, 1999.

OMG UML. OMG Unified Modeling Language Specification 1.3, June 1999.
UML Resource Center. http://www.rational.com/uml/documentation/.

Sherif M. Yacoub and H. H. Ammar. Toward Pattern-Oriented Frame-
works. Journal of Object-Oriented Programming, 12(8):25-35, January
2000.

LIST OF FIGURES 67

List of Figures

© 00 N O Ut k=W N =

W oW N N NN N NN NN N ke e R e
m O © 0 9 O O R W N R O © ® ~N1I O Uk W N R O

Pali Source for Listo 18
Refinement List to Composite 19
PaL Source for Composite 20
Collaboration/Design Patterns-Notation in UML 28
Framework Studio: Documentation Window for Composite . . . 33
Framework Studio: Observer Pattern Application 34
Quarry: Application of Singleton 36
Combination List with Iterator 43
Pattern Extension Menu File 46
New Pattern Menu oL 46
Registry File oo 47
Stereotype Definition File 48
Class Diagram List Pattern 49
PList — Sequence Diagram — Add Item to List 49
Empty Design Pattern 50
Design Pattern Factory Method 50
Combination to Create Iterator Pattern 51
Pattern Container 51
Combination Dialog with Source Patterns 52
Component List after Combination 53
Final Iterator Class Diagram 54
Composite Pattern L 0oL 55
Component List Composite Pattern Combination —1. 55
Component List Composite Pattern Combination —2 55
Operation List of Composite Component —1 56
Operation List of Composite Component -2 56
Composite Pattern with 2 Leafs 56
Combining List and Iterator 57
Class Diagram List Iterator 57
Confirmation Dialog Iterator 58

Class Diagram List Iterator 62

Erklarung

Ich erklére, dass ich die vorliegende Arbeit selbststéndig und nur unter Verwen-
dung der angegebenen Literatur und Hilfsmittel angefertigt habe.

Rostock, 2000-05-31

Danko Mannhaupt

Theses

10.

. Design patterns are descriptions of classes and objects that collaborate to

solve a general problem in a specific context. Patterns description includes
context, problem specification, solution, consequences, and examples.

Documenting development with design patterns can improve productivity
and software quality. Common sense is a sound indicator of the usefulness
of patterns in comparison to alternatives.

A design pattern-oriented model together with the pattern-oriented pro-
gramming language Pal. directly supports the notion of a design pattern,
its refinement, combination, and instantiation.

Patterns are model elements. They can be understood as system compo-
nents and are combined to build a software system.

To document and define design patterns, these elements are used: the
pattern itself as a container of components, a pattern interface, relation-
ships between components and between patterns, and different interaction
diagrams.

Refinement and combination can be applied to design patterns to increase
their functionality and prepare them for specific applications.

CASE tools provide software development assistance. Object-oriented
tools apply UML. None of the current tools universally supports design
patterns. The existing tools that integrate patterns with Rational Rose
have several limitations.

Patterns are related to UML packages. Rose packages can be supple-
mented with UML stereotypes and used as design patterns.

Design pattern combination can be executed with a complex dialog that
displays participating patterns, components, attributes, and operations.

Rational Rose can support design pattern-oriented software development.
The pattern extension enables it to serve as a pattern repository. Its
contents can be expanded effortlessly, pattern combination and refinement
as well as pattern application is possible.

