

Patterns in Collaborative System Design, Development and Use

B. David, O. Delotte, R. Chalon, F. Tarpin-Bernard, K. Saikali

Laboratoire ICTT, Ecole Centrale de Lyon – INSA de Lyon

36, avenue Guy de Collongue, 69134 ECULLY, France
Bertrand.David@ec- lyon.fr

Abstract: Design, Development and Use of collaborative systems is a very interesting and complex case of
cross-pollination between usability and software engineering. User Centered Design (UCD) is a necessity for this
kind of systems allowing to different actor to work together in a cooperative environment. Classical HCI is
augmented by the HHI (human- human interaction) and by the need of awareness (shared conscience of other
actors and of their actions on the common work). The complexity of CSCW tools is growing from asynchronous
to synchronous, from individual applications to cooperative systems and from classical workstation based static
environment to Capillary CSCW (David et al., 2003a), i.e. mobile environment with handheld devices. We
proposed an environment, architecture, models, tools and overall methodology for design, development and use
of collaborative systems (David et al., 2003b). In this position paper we propose to examine this environment
from UCD and pattern point of view. This is a special patterns-oriented walkthrough of our work..

Key-words: Patterns, CSCW, model-based design

1 Introduction

Our approach of patterns is the following. In
relation with Alexander (1977), Gamma (1995),
Borchers (2001) and Seffah (2003), we adopt more
comprehensive definition which is relatively
simple: A pattern is a collection of elements and
their relationships which can be repetitively
reached or used in analysis, design, development
and use (of cooperative systems). This definition
is generic and can be specialized to correspond to
Alexander’s, Gamma’s, Borchers’s, Seffah’s, etc.
views.

The concepts of element and relationship are
generic with appropriate specialization for each
context. In this way during our pattern oriented
walkthrough, we can consider:

- Scenarios as patterns
- Algorithms as patterns
- Steps of methodology as patterns
- Frameworks and patterns
- Design rules as patterns
- Interaction configurations as patterns
- Etc.

Of course, individual scenarios, algorithms, steps of
methodology, etc. are not patterns, but either their
general structure or their reusable specialization can
become patterns. In pattern based approach the
actors are permanently oscillating between top-
down and bottom-up views, i.e. from patterns to

concrete situations, from concrete situations to
reusable patterns.

As we will see in more detail thus after, we can
reuse or imagine:
- Analysis patterns: for scenarios discover
- Transformation patterns: for transformation a

set of scenarios into a model (CAB)
- Projection patterns: for projection of CAB to

software architecture
- Interaction patterns: for collaborative

application interactions
- Etc.

2 Pattern oriented walkthrough

In this walkthrough we study the patterns in a well-
organized process based on a collection of models
which are used in analysis, design development and
use of cooperative systems .

CSCW (computer supported cooperative work)
(Ellis , 94, Andriessen, 03) research proposes a new
type of software, called groupware, which is an
interactive multi-participant application allowing
participants to carry out a "joint" task working from
their own workstations. It is now a question of
managing not only the man-machine interface but
also the man-man interface mediated by the
machine. The relationship between the participants
can be considered from various points of view. Ellis
et al. (Ellis , 94) proposed a matrix which classifies
the nature of cooperation in regard to time -
synchronous or asynchronous, and to distance -

local or remote aspects of cooperation. This
classification was extended later, introducing
awareness of cooperation, foreseeability or
unpredictability of collaboration and location. The
possibility of bringing together geographically
distant people is an important contribution of
groupware. The first aim of groupware is thus to
propose a support for the abolition of space and
time distances. Moreover, knowledge and
management of the interventions of the multiple
participants appear necessary. In fact, the
participants constitute a work group that has to be
organized with respect to working conditions, time
and location. The organization can lead to the
definition of different roles, sub-groups and phases
of project work. The success of cooperative work
can be measured by the way in which the
groupware is able to create and support good group
dynamics, which contributes to the disappearance
of the virtuality of participants’ presence. The
project must be able to proceed as naturally as in
collocation and without IT support. It must even
take advantage from an organization of more
effective work based on the new possibilities
offered by information technologies (IT). The
technological devices used should not interfere with
the work or the group dynamics needed for project
accomplishment. When designing cooperative
systems, it is thus necessary to be aware that the
usability aspect, the aim of which is to validate the
environment suggested, is at least as significant as
the engineering aspect. The evolution of users'
practices during the project life-cycle must be taken
into account in order to provide an effective and
adaptable environment.

In-depth analysis of cooperation reveals several
dimensions which must be examined, as initially
proposed by Ellis (Ellis -94) with the Clover model,
i.e. a support of production, conversation /
communication and coordination between
participants.

2.1 Scenario-based Design, CAB
Model and patterns

Carroll's view of Scenarios-Based Design (Carroll,
00), "Scenarios are stories" which can be expressed
more or less freely or formally, is an interesting
starting point for collaborative system design and
evolution. However, it seems important to go
further. We propose to apply this scenario-based
approach in a more organized way. In relation with
the Clover model, the scenario discovering process
can be driven by this model to organize discovery
scenario process in relation with production,
coordination or conversation space or in their

intersections. To facilitate this analysis, scenario
patterns are proposed for each of Clover model
space, i.e. production, conversation /
communication and coordination (Figure 1 and
Figure 2, 1).

At the second step of our design process, we
propose to synthesize these scenarios in a model
integrating collaborative application behaviors. We
call this model a CAB model (Collaborative
Application Behavior Model). We consider that it is
important to integrate the scenarios as soon as
possible in CAB perspective i.e. to ask the scenario
writers to express explicitly the position of the
scenario in relation with the CAB Model. The main
goal of the CAB model is to describe explicitly the
structure of actors, artifacts, contexts and tasks that
characterize the behavior of the cooperative
application in three Clover spaces (co-production,
coordination, conversation). Each scenario
expressing a task might indicate its position in
relation with these actors, processes, artifacts and
contexts. In this way it is possible to elaborate
progressively the CAB model for a given
application. The CAB model for a specific
collaborative application contains concrete actors,
artifacts, tasks and contexts which the cooperative
application will take into account. To facilitate this
transformation from scenarios to CAB,
transformation patterns are proposed. Their
objective is to express transformation principles,
i.e. projection of each scenario to the CAB
components (Figure 1, 2).

The CAB model itself is based on patterns
(Figure 1, 3). For instance, actors’ organization can
take different forms, as hierarchical, flat or nested
which can be suggested by different patterns. In the
same way, tasks expressed in different scenarios are
studied in order to organize them. The goal is to
eliminate redundancies and to elaborate a task tree
and a task process. The task tree can be expressed
in ConcurTaskTree formalism proposed by Paterno
(Paterno, 00). Of course, patterns are useful to
express typical task sub-trees. The process view is a
workflow view with temporal and logical
dependencies between tasks. Here also patterns can
be used to express main intermediate workflow
configurations (Saikali et al., 2001). The context
view is an exp ression of different contexts (logical
or physical) related to environment and devices
constraints, if any. Their structuring by patterns
seems very useful. The validation of CAB model
from completeness, correctness and coherence are
also based on patterns of validation. The CAB
model will be used in the elaboration stage
(development or prototyping).

1. register
2. identify and input in the session
3. leave a session
4. joint a session
5. observe
6. contact one or several actors
7. observe solicitations
8. answer solicitations
9. establish a synchronize contact
10. ask for advice
11. actualize

12. decline identity
13. document
14. write a memo
15. make diagnosis
16. validate diagnosis
17. organize actions
18. diagnostic together
19. repair together
20. propose help
21. describe actual situation
22. constitute an aparté

Figure 1: Open-ended list of scenario patterns which become HCI patterns

Scenario 3

Scenario 2

Scenario 1

Context
Artefacts

Process

Tasks tree

Actors

Evolution

Co-evolution

Transformation

CAB-M

Environments

Env 3
Env 2

Env 1

Pattern 3
Pattern 2

Pattern 1

HCI Patterns

Conponents 1
Component 2

Component 3

Components

Explicit evolution

Initial expression

Contextualisation
Adaptation

Specialisation

Collab. Appli. level - CUO-M AMF - C

Groupware infrastructure level - CSA-M

Distributed system level - DSI-M

Cooperative application

Scenario 4

Scenario 5

1 2

3

4

5

Figure 2: Model-based process for design and evolution of cooperative systems

2.2 Software infrastructure and
patterns

With respect with software engineering
considerations, the cooperative application cannot
be carried out from scratch. It is necessary to
identify different levels of development which are
more or less dependent on the application. In
framework based approach, three functional layers
are recognized.

The top layer corresponds to the collaborative
application level. It contains all the cooperative
software employed by the users. This level is
definitely user-oriented, which means that it
manages interaction control and proposes interfaces

for notification and access controls. This model is
called CUO-M (Collaboration User-Oriented
Model). It uses multi-user services provided by a
second layer called the groupware infrastructure,
called CSA-M (Collaborative System Architecture
Model). It is a generic layer between applications
and the distributed system. This layer contains the
common elements of group activities and acts as an
operating system dedicated to groups. It supports
collaborative work by managing sessions, users, it
groups and provides generic cooperative tools (e.g.
telepointer) and is responsible for concurrency
control. It also implements notification protocols
and provides access control mechanisms. The last
layer is essentially in charge of message multicast
and consistency control. We call it DSI-M
(Distributed System Infrastructure Model). Usually,

it is a computer-oriented layer which provides
transparent mechanisms for communication and
synchronization of distributed components which
misfit with CSCW aims but which are very useful.

The degree of generality (and genericity) is not the
same for these three layers and models. The lowest
layer (DSI-M) is for the most part independent from
the collaborative applications. The middle level
(CSA-M) can be dependent on a category of
applications, but is stable for each category and
each application during its life -cycle. The highest
level (CUO-M) is, by construction, dependent on
the application, because it is constructed (or
specialized) with respect to the CAB-M.

This software infrastructure is framework – pattern
oriented, i.e. framework gives main software
architecture principles and patterns are used at each
layer to express typical and reusable local behaviors
(Figure 1.5). This is the case at the collaborative
application level, as we will see later. It is also the
case at groupware infrastructure level, with for
instance pessimistic or optimistic ways to manage
concurrency, and at distributed system
infrastructure in relation for example, with network
speed aspect.

2.3 AMF-C as CUO Model and patterns

An appropriate CUO model should fulfill three
main objectives. Firstly, it organizes the software
structure to improve implementation, portability
and maintenance. Secondly, it helps identify the
functional components, which is essential during
the analysis and design process. Its third role is to
facilitate the understanding of a complex system,
not only for designers, but also for end-users.

AMF-C (the French acronym for Collaborative
Multi-Faceted Agent) (Tarpin-Bernard et al., 97) is
our proposal for the CUO model for collaborative
software which fulfills all these objectives. AMF-C
is a generic and flexible model that can be used
with design and implementation tools. It includes a
graphical formalism that expresses the structures of
software, and a run-time model that allows dynamic
control of interactions.

The current trend in software engineering is to
identify design patterns (Gamma, 95), which help
developers to share architectural knowledge, help
people to reuse architectural style, and help new
developers to avoid traps and pitfalls traditionally
learned only as a result of costly experience. AMF
proposes a multi-faceted approach, in which a
configuration of facets or each facet can be a
pattern. Each new identified behavior which seems
to be reusable can be formalized as a new facet, i.e.
a new pattern. AMF also proposes a very powerful

graphical formalism which helps understand
complex systems. This formalism is used as a
design tool by editors and builders. It represents
agents and facets with overlapped boxes,
communication ports with rectangles which contain
the associated services, and control administrators
with symbols which express their behavior. Using
the AMF, it is possible to model an interaction
control in a single-user application. In the simplest
case, when only one agent is implicated, two simple
administrators (A1 & A2) generally manage the
relations between an action starting from the
Presentation facet and the associated command
defined in the Abstraction facet (figure 3). It
constitutes an elementary pattern of interaction. In a
multi-user context, an application must be able to
notify each action of one user to the other members
of his group, and each agent must be able to
reproduce the actions of remote users. To solve this
problem, we created AMF-C a cooperative
extension of AMF (Tarpin -Bernard et al., 1998).

2.4 Development, evolution and patterns

We propose a development process which is based
on projection of the CAB model on the software
architecture based on CUO, CSA and DSI models.
This projection is a complex transformation with
mainly three aspects (Figure 1,4), which are
Contextualization, Adaptation and Specialization:

- The contextualization process transforms CAB

model in an executable application in relation
with the context describing the hardware
configuration of the workstation (PC, PDA,…)
to take into account Capillary CSCW
(cooperative work using handheld devices)
(David et al., 2003b).

- The adaptation is the process which takes into
account user’s characteristics and his
preferences.

- The specialization is the process which takes
into account the roles assigned to the user and
corresponding tools in order to produce an
appropriate working configurations.

These transformations are in relation with
architectural choices and interface plasticity. They
are driven by three sorts of patterns: environmental
patterns, HCI patterns and component patterns.

2.4.1 AMF-C architectures and patterns

Two collaborative architectures have been proposed
in AMF-C context (Tarpin-Bernard et al., 1998):
fragmented and replicated framework.

If we try to model an elementary interaction (e.g.: a
button triggers an action on an agent), we can
consider a situation in which a first user is

responsible of the agent, whereas a second user can
just interact with its presentation. In this case, we
can imagine that the agent is mainly located on the
first user's workstation (Figure 4). To assume
concurrency control and maintain the consistency

of the shared agent, it is necessary to define new
types of administrators. In the example given on the
figure 4, we have built a lock administrator which
filters the access to the agent.

Interactive Agent

Presentation Facet

Start_Action

Echo_Action

Abstraction Facet

Do_Action

Control

A1

A2

The symbol represents a port that can be activated by the user (ex: via a mouse click).

Facets

Communication Ports Control Administrators

Figure 3: Elementary pattern of interaction expressed in AMF

Fragmented AMF-C Agent

User 1 Present.

Start_Action

Echo_Action

Abstraction

Do_Action

Control

Start_Action

Echo_Action

User 2 Present.

1
2

3

Do_Action is activated if one
Start_Action port is activated
and if the lock is opened. The
activation closes the lock.

unlock

Lock Administrator

Figure 1: An example of elementary interaction on a fragmented AMF-C agent

Object Selection
&

Action Validation

Action Ending
&

Object Freeing

Local controller of ECooP environment

(b) Double actions administrators

Object
Selection

Action
Validation

Action
Ending

Object
Freeing

(a) Single action administrators

Figure 5: Cooperative administrators of AMF-C

 Interactive AMF-C Agent

Presentation Facet

Start_Action

Echo_Action

Abstraction Facet

Do_Action

Control

Distant Facet

Replay _Action

The symbol represents a port that can be remotely activated by another member of the group when
this user activates the port Start_Action of the Presentation facet of his local agent.

A1

A2

A3

Figure 6: A first interaction pattern on a shared agent modelled with AMF-C

Interactive AMF-C Agent

Presentation Facet

Start_Action

Echo_Action

Abstraction Facet

Do_Action

Control

A1

A2

A3

Distant Facet

Replay_Action

Select_Object

Echo_Selection

Free_Object

Echo_Free Select

Free

The object is framed in red
(or blue when it is remote...)

The framed is removed

Figure 7: A second interaction pattern on a shared agent modelled with AMF-C

The dynamicity property of AMF-C agents allows
to formalise the adaptation of each agent to the
current user's role. Indeed, the number and the form
of facets is not static, any change of role can lead to
substitute a facet, and especially a presentation one.
The fragmented AMF-C framework is well adapted
to represent hybrid architecture in which some
facets are centralised whereas others are replicated.

The replicated version of the AMF-C model fits
very well with ECooP, CSA model implemantation.
Indeed, to implement flexible concurrency control,
we first need to define specific administrators able
to dialogue with local controller using functions of
the ECooP API and second to build a new facet,
called Distant, which receives the notifications of
remote actions. Figure 5 presents the schematic
representation the four administrators which realise
the four phases of the dialogue (a) and two
additional administrators (b) which can be used to
implement direct manipulations (Object Selection
and Action Validation can be simultaneous).

Considering both AMF-C frameworks, we can
imagine various design patterns related to the
choice of thematic facets or to the choice of control

mechanisms. We give here two examples of
patterns associated to the replicated framework.

Using the six administrators that we have presented
figure 5 and referring to the standard interaction
pattern presented figure 3, we can define a first
pattern of cooperative interaction (Figure 6). When
the message sent by Start_Action crosses the A1
administrator, all the remote agents receive from
ECooP a message which activates the
Replay_Action port of the Distant facet, so that the
action is replayed on each replica of the agent.

It is also possible to define a second pattern of
interaction in which selection and unselection
phases are clearly distinct from the action phases
(see figure 7). This pattern allows users to see the
objects which are locked (locally or remotely).

2.4.2 Workflow, coordination and patterns

In this paragraph, we give a short example of how
our framework 2FLOW (Saikali et al., 2001) for
adaptive workflow can be used for the construction
of a collaboration pattern. This example is about the
management of a dialog among many participants.

The dialog can be assimilated to a generic process
composed of generic activities that are: "give hand"
(allows a participant to talk or to use a certain tool),
"ask hand", and "free hand". However, the
execution order of these activities is not known by
advance but the events that enact them are clearly
identified: "hand released", "hand requested" and
"hand attributed". It is also possible to identify two
generic roles that can be associated to the activities:
"participant" and "coordinator". Notice that an actor
can take both roles. This process can easily be
translated into 2FLOW components, as it is shown
in figure 8.

2FLOW adaptability mechanisms allow us to
particularize this pattern into different processes
that share the same principle of execution. For
example, the previous pattern can be specialized
into a process for managing shared resources.
Moreover, the actor-role-activity approach that we
use allows the involvement of automatic actors in
the process, as well as human actors. For example,
we can consider using a computerized agent in the
role of the dialog coordinator.

Naturally, thanks to the inherited base behaviors,
the pattern and its derived processes are fully
functional; they can thus be directly integrated into
another application, a collaborative one for
instance.

2.4.3 Evolution

During application life -cycle, users progressively
change their perception of the system and their use.
The cooperative application could, during its use,
take into account requirements concerning
evolution expressed explicitly or implicitly by its
users. This is particularly the case in the context of
Capillary CSCW (cooperative work using handheld
devices) (David et al, 2003b) in which behavior
evolution is more important related to context
condition (connected or disconnected work) and the
device used. To take into account this evolution in
an explicit way, new scenarios can be presented
which upgrade or extend initial the COB model.
The Cooperative Application Behavior model
evolves smoothly and it is important to be able to
take this evolution into account. This evolution can
vary in importance and its impact can be taken into
account in different ways:

• If the evolution is within the scope of the

system, i.e. these adjustments have been
imagined and they are at the disposal of the
user in the "configuration panel" (use of
different interaction modalities, modification of
awareness, choice of different WYSIWIS

relaxation, plasticity of user interface, etc.) as
alternative patterns.

• If the evolution is more important and leads to
modification of the CAB model, two different
solutions are possible:
- Change of interaction pattern with the

same algorithmic behavior: this evolution
is relatively easy and can be performed by
the end-user (i.e. by visual programming
using AMF-C graphic formalism),

- Change is more important also with
algorithmic behavior evolution: in this
case a developer intervention seems
inevitable.

To take into account this re-configurability,
adaptability and flexibility, we need new scenarios,
which can also replace or modify existing ones.
Their processing leads to modification of the CAB
model and has an impact on the CUO model. The
evolution can either be implemented on the existing
IT support or this support can evolve too. We
expect that the latter evolution, which concerns the
CSA and DSI models, will seem to be out of scope
of the evolutions which can be taken into account
dynamically. To be able to modify dynamically
CUO, we need to have at our disposal a meta-model
of the CUO model to create dynamically new
AMF-C agents in the relation with the re-
configuration of the COB model. This co-evolution
can be implemented either by the end-user himself
or at least expressed by him, on his directives or
under his control, by the developer. In this context
patterns are the good way to manage the diversity
and increase the granularity of intervention.

3 Conclusions

Two main observations can constitute the
conclusion of this position paper. First one is
related to the project of case study to be elaborated
during the workshop on the theme of e-shop. It
seems me that the problematic of e-shop can be
relatively close to our problematic of cooperative
systems design, development and use. In this way it
seems interesting to transfer, adapt and complement
the patterns identified and proposed in our study.

Second observation concerns the comprehensive
view of patterns as point of junction between HCI
and software engineering fields. This concept is at
the same time very important, as demonstrated our
study, but can be consider as buzzword, if the
definition is not clarified as well as the relation with
the concepts of scenario, use-case, algorithm,
design rule, step of methodology, etc. That should
be one of the future developments during or after
the workshop.

Role

Coordinator

+ attribute_hand()

...

Participant

+ request_hand()

+ free_hand()

Activity Event

Attribute_hand Request_hand Free_hand

Hand_attribute
d Hand_freed

in

out

out

in

in

Hand_requested

out

in

Figure 8: Collaboration pattern - managing a dialog

References
Alexander C. (1977) "A Pattern Language: Towns,

Buildings, Construction". Oxford University
Press, New York.

Andriessen J.H.E. (2003). Working with
Groupware: Understanding and Evaluating
Collaboration Technology, Springer, CSCW
Series

Borchers J. (2001). A Pattern Approach to
Interaction Design, Willey Series in Software
Design Patterns, Wiley.

Carroll J. M. (2000). Making Use: Scenario-Based

Design of Human-Computer Interactions, The
MIT Press 2000.

David B., Chalon R., Delotte O., Vaisman G

(2003a). Scenarios in the model-based process
for design and evolution of cooperative
applications. In: Human-Computer Interaction
Theory and Practice (Jacko J., Stephanidis C.
ed.) Vol. 1, LEA, London, pp. 68-72.

David B., Chalon R., Vaisman G., Delotte O.

(2003b). Capillary CSCW. In: Human-
Computer Interaction Theory and Practice
(Stephanidis C., Jacko J., ed.) Vol. 2, LEA,
London, pp. 879-883.

David B., Chalon R., Delotte O., Ros J., Boutros N.

(2003c). Travail coopératif capillaire en
dépannage, maintenance et interventions de
crise. In: 5th International Congress on
Industrial Engineering, 26th-29th October
2003, Québec, Canada

Ellis C.A., Wainer J. (1994), A Conceptual Model

of Groupware, ACM CSCW'94 Conference,
pp. 79-88, ACM Press

Gamma E., Helm R., Johnson R.E., Vlissides, J.
(1995). Design patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Paterno F. (2000). Model-Based Design and

Evaluation of Interactive Applications, Applied
Computing Series, Springer.

Saikali K. David B. (2001). Using Workflow for

coordination in Groupware applications.
Blandford, Vardendonckt, Gray (eds),
Interaction without Frontiers, Proceedings of
Human Computer Interaction 2001, Springer
Verlag, People and Computer vol.15

Seffah A. (2003). Pattern Corpus and Web-based

pattern catalogue, In progress work , University
of Concordia, Montreal

Tarpin-Bernard F., David B.(1997), AMF a new

design pattern for complex interactive software
?, International HCI’97, San Francisco, 24-29
August 1997, in Design of Computing Systems,
21 B, Eds Elsevier, ISBN 0444 82183X, pp
351-354

Tarpin-Bernard F., David B.T., Primet P. (1998).

Frameworks and patterns for synchronous
groupware: AMF-C approach. IFIP Working
Conference on Engineering for HCI: EHCI’98,
Greece. Kluwer Academic Publishers. pp. 225-
241.

