
A Usability Evaluation Pattern Language
Michael Gellner& Peter Forbrig

University of Rostock, Department of Computer Science, Software Engineering
Group, Albert-Einstein-Str. 21, 18051 Rostock, Germany

{mgellner, pforbrig}@informatik.uni-rostock.de

Abstract: In most of the cases usability evaluations are done by usability experts. Employing such experts
requires a certain size in business. So in a lot of small and middle sized companies developers are forced to learn
how to handle usability aspects. This is not much easier than teaching usability engineers how to develop soft-
ware. The usability evaluation process and its requirements also miss usable advices. As a solution, a light-
weight usability evaluation model for software developers is created. This model is described by a pattern lan-
guage.

Keywords: pattern language, usability engineering, usability testing, usability evaluation, interactive systems

1 Modeling
Usability
Evaluations
and Usability
Engineering
We start with an intro-
duction given in a
proposal (Gellner 2003
d). One of the most
comprehensive views
is given by Mayhew
(Mayhew 1999). As
shown in Figure 1 her
lifecycle considers all
aspects from the first
steps to the successful
installation of the
software. Fulfilling the
requirements of this
lifecycle will lead to a
complex organiza-
tional structure. Fur-
ther this process model
does not work well if
several alternations are
possible. These requirements are hard to fulfill for a
small or middle sized company. A whole staff is

Work Reengi-
neering

Conceptual
Model
Design

CM
Mockups

Iterative CM
Evaluation

Screen
Design

Standards

Iterative
SDS

Evaluation

Detailed
UI

Design
Design/Testing/Development Level 1

 Level 3

 Level 2

No

SDS Proto-
typing

Start: Application Architecture
OOSE: Analysis Model

Start: Application Development
OOSE: Design Model/Imp. Model

Style
Guide

Yes

Unit/System Testing
OOSE: Test Model

All Function-
ality Ad-
dressed?

Eliminated
Major
Flaws?

Yes No

No
Met

Usability
Goals?

Style
Guide

Yes

Style
Guide

 UE Task

 T Development Task
 Decision Point

 Documentation
 Complex Application
 Simple Application

User
Feedback

 Installation
Installation

Enhancements

No

Yes Done

All
Issues

Resolved?

Requirements Analysis

Function/
Data Modeling

OOSE: Test Model

Contextual
Task

Analysis

Plattform
Capabilities
Constraints

General
Design

Principles

User
Profile

Style
Guide

Usability
Goals

Iterative
DUID

Evaluation

Figure 1: Usability Engineering Lifecycle (Mayhew 1999)

Yes

No

Met
Usability
Goals?

1. Know The user
a. Individual user characteristics
b. The user’s current and desired tasks
c. Functional analysis
d. The evolution of the user and the job

2. Competitive analysis
3. Setting usability goals

a. Financial impact analysis
4. Parallel design
5. Participatory design
6. Coordinated design of the total interface
7. Apply guidelines and heuristic analysis
8. Prototyping
9. Empirical testing
10. Iterative Design

Figure 2: Usability Engineering Model (Niel-
sen 1993)

necessary to manage the various tasks. Mayhew’s
lifecycle is directed to usability experts or decision
makers in a bigger environment that wants to estab-
lish a usability department. This approach seems not
to be applicable for a small team of developers.
Similar to Mayhew’s Usability Engineering Lifecy-
cle is Nielsen’s Usability Engineering Model, see
Figure 2 (Nielsen 1993). At first view this looks like
a list that has to be simply worked off, which is
incorect. Nielson’s model contains circles and feed-
back paths, also, but it mentions only the compo-
nents of usability engineering. The context is as-
sumed to be known. The correct application does not
result in a kind of lightweight model. However, it is
not so easy to find a suitable model.
Another approach that is often discussed in that
context is the Star Life Cycle from Hartson and Hix,
see Figure 3 (Preece 1994). In contradiction to Niel-
sen’s model the Star Life Cycle offers structural
information associated with the components. This
model is also not really helpful for developers: It

shows only the steps that are known from the devel-
opment models around the term »Evaluations«. This
explains not much about how evaluations could be
conducted easily. Hartson and Hix do not consider
the Star Life Cycle as a model for usability evalua-
tions or for usability engineering. The focus is on an
alternative to the waterfall or spiral model for devel-
opment purposes since those models even do not
mention evaluations or the term »usability«. So the
Star Life Cycle is no solution for the problem men-
tioned above.
Further approaches for modelling usability engineer-
ing, usability evaluations or usability testing are
shown by Rubin (Rubin 1994), Constantine and
Lockwood (Constantine and Lockwood 1999), Du-
mas and Redish (Dumas and Redish 1999) and oth-
ers. The approaches that show usability testing only
are not discussed separately since this is only one
aspect we want to cover
.

2 Terminology
Before our approach is presented some terms should
be explained. The first thing that is interesting is the
weight of a model or a process. Some processes like
eXtreme Programming (XP) or Hacking are consid-
ered as lightweight models. The counterpart to these
are models like the waterfall and the spiral model, as
well as the Rational Unified Rrocess (RUP). The
difference is the flexibility the process allows for its
users (Eckstein 2000). Applying the waterfall model
means to go through the first step to the last one
only once. Errors are hard to correct since it is al-
lowed to go back only one step if necessary. Practice
shows that it is often helpful to go back further. A
second criterion for characterizing process models is
the quota of work which has to be done. According
to these considerations, Mayhew’s usability lifecycle
and Nielson’s usability engineering model are heavy

weighted models. Our present model
offers a lot of liberties (see section
The Eight Phase Pattern). It contains
structural information but does not
hinder going back if necessary. This
enables software developers to de-
cide nearly free how to combine
steps. Since nearly no work has to be
done to fulfill the models require-
ments we tend to classify it as a
lightweight model.
The next topics are the usability
terms: Usability engineering includes
every activity that is related to any

Task Analysis /
Functional Analysis

Requirements
Specification

Conceptual Design/
Formal Design

Prototyping

Implementation

Evaluation

Figure 3: Star Life Cycle [Pre 94]

Figure 4: Layers of Usability Terms

Usability Engineering

Usability Evaluation

Usability
Inspection

Usability
Testing

Task Analyses

...

ing

Determining testing targets
Choosing testing methods

Developing testing material

Planning and organization

Executing the test

Editing data

Evaluating data

Writing the study

Figure 5: Eight Phase Pattern

stage of the product development to improve the
usability properties. The term stands for a kind of a
superset of work and measures around this issue. For
the purpose of evaluating results such models are too
broad. Sub-terms are Usability Evaluation, Usability
Inspection and Usability Testing.
Usability evaluation is one compo-
nent of usability engineering that is
realized by usability inspections and
usability testing. Further components
of usability engineering are task
analyses, requirements engineering
and others that are not considered
here. Usability Testing means to test
artifacts with actual users. The arti-
facts can be software prototypes but
also early paper and pencil mock-
ups. A usability inspection is done
by comparing artifacts against re-
quirements, checklists or giving them to an expert
review. See Figure 4 for an all-embracing view.
The last term that should be explained is »eXtreme«.
The term eXtreme Programming (XP) is created by

Beck in 1998 (Beck 1998). Beck became engaged in
the Payroll Project at Chrysler, a project entailing
substitutions of 15 different payroll systems that
were running concurrently at that time. The project
suffered classical software engineering problems.
XP overwrites with some established rules. The
following shown approach is not as radical for us-
ability engineering as Beck’s approach was for
software engineering. The term extreme is adapted
to extreme evaluations since our approach wants to
enable more agile workflows as well.

3 The Eight Phase Pattern
To be understood easily by developers, the approach
is designed as a model that is known in that domain.
Although the former waterfall model has some
disadvantages it is really easy to understand and well
known by software developers. For usability
evaluations it is no problem to go back only one
phase (Gellner 2000). Our eight phased model is
shown in Figure 5. Since it is part of a pattern lan-
guage for extreme usability evaluations it is called

Eight Phase Pattern. For further information see
(Gellner 2003a).
Beneath the information, which sub-tasks have to be
fulfilled, also structural information is given. It is
possible to go back as far as necessary at every time.
Figure 6 shows the relations between the Eight
Phase Pattern and the waterfall based development,
Figure 7 shows how to integrate the Eight Phase
Pattern in spiral development processes. In the same
way the integration of tests can take place by other
development approaches (incremental model, object
oriented model etc.).
In comparision to some other models, the Eight
Phase Pattern contains no component that limits the
usage in external projects. The scenario of external
consultants or usability experts is covered as well as
in-house evaluation.

Specification

Design

Implementation

Testing (functional)

Release

Analysis

Validation Test

Exploration Test

Comparison Test

Assessment Test

Figure 6: Integrating the Eight Phase Pattern

Determin-
ing

testing
targets

Choosing
Evalua-

tion
Methods

De-
velop
Test-
ing

Mate-
rial

Plan-
ning
and

Organi
zation

 Writ-
ing
the

Study

Event
Re-

corde

Event
Player

Ana-
lyzer Ana-

lyzer

Usability Log System

Figure 8: Categorizing Tools

.

4 Applications
The eight Phase Pattern can be seen as a process
description and as a development concept (take it
and cover every phase with tools). Nielsen’s model
(see Figure 2) for example contains several points
(participatory design, prototyping and others) that
are hard to map into software tools, whereas every
point in the Eight Phase Pattern can be seen as a
component in a workflow management tool (repre-
sented in the most primitive case at least as wizards).
In comparison to software development we are
nearly speechless if tools or methods have to be
judged. In software development we can easily as-

sign a tool to a
certain phase into
the waterfall view
(IDE → implemen-
tation, UML-
Painter → analyz-
ing, specification,
CASE Tool →
spanning phases).
This works even if
the waterfall is not
the underlying
model.
The Eight Phase
Pattern enables
such communica-
tion for usability
evaluations (see
Figure 8). It is also
possible to analyze
the costs that were
caused by the work
for each phase, see
Figure 9. This data
can be used to
compare with other
labs to increase
efficiency. Further

more it allows recognizing areas or phases not cov-
ered by tools.
Our intention to find approaches for software sup-
port led to a set of tools. Until now there are ap-
proaches and solutions for the phases 2 to 7. Tools
that support phase embracing evaluations are con-
sidered as Computer Aided Usability Evaluation
Tools (CAUE). This term again is created similar to
the term Computer Aided Software Engineering
(CASE).1
Our most powerful approach ObSys combines the
methods

 Event Logging (using predefined short cuts
manually to save observations)

 Event Recording (capturing automatically
the message queue of an operating system)2

1 In literature there is also mentioned the term Com-

puter Aided Usability Engineering (CAUsE). At
the moment we see no basis for such a comprehen-
sive demand.

2 At the moment determined to Microsoft Systems;
beneath the ObSyS-Tool we have a VNC-based
solution that works on all platforms to be con-
nected to the internet

Prototype1 Prototype2
Prototype3

Pilote system

Simulations, Models, Compari-
sons,Concept

Software
requirements

Product
design

Requirements
and lifecycle plan

Development
plan

Integration and
testing plan

Detailed
design

Risk analysis

Risk analysis

Risk analysis

Ri
sk

 an
aly

sis

Validating
requirements

Validating
requirements

C
od

in
g

M
od

al
 te

st

Integration
and test

Acceptance
test

Implementa-
tion

Review

Finding consensus to start
next development phase

 Evaluating alternatives
 Calculating risks

 Next iteration development
 Verifying prototype

 Planning next phases
 Reviewing state of project

Requirements Engineering

Figure 7: Integrating the Eight Phase Model in the Spiral Model

Figure 10: List with recorded events

Figure 11: MouseMap after Observation

Figure 12: Differences between events

0 1 2 3 4 5 6 7 8 9 10 11 12
t [min]

t [s]
2,0

1,5

1,0

0,5

0

 Video Recording
 Screen Capturing

Event recording has especially a high potential to
automate product or prototype-based usability
evaluations. However, as known to usability experts,
it is too late to start with evaluations when there are
pre-releases. For that reasons there are more meth-
ods we recommend and try to combine. The events
are saved in databases and can be processed with
SQL to find striking datasets (see Figure 10).
More concisely is our visualization called
MouseMap. This multidimensional representation
allows watching events graphically. The direction
the mouse moves is visualized by color gradients,
and clicks are pointed as round dots and the speed is
indicated by the thickness of the lines (Gellner and
Forbrig 2003, Gellner 2003b).
MouseMaps summarize in an image what as a video
sequence takes some time, see Figure 11. On the
other hand selecting too many events for a
MouseMap is too complex to be analyzed qualita-
tively.

At the moment, error detection is not automated. An
easy way to find error »candidates« is given with the
time series of the events. If the time differences are
visualized peaks can appear. Assumed that a user

acts with a personal workflow, a peak can indicate a
tool based problem (but also someone asking some-
thing else). In a usability evaluation session all inter-
ruptions (reading scenarios, getting explanations
etc.) are documented. So it is easy to distinguish
between deflections and other sources for peaks.

The shown scenario in Figure 12 was observed by
editing paragraphs in WinWord with built-in prob-
lems. Around half of the peaks were caused by read-
ing the scenario items. The other peaks indicate
problems. Analyzing six (± 3) exact positions in a 10
minute scenario is much easier than watching the
scenario three times on video to find fairly the same
positions
.

5 Pattern Language
The work with our tools inspired us in the identifica-
tion of different patterns in usability evaluation.
Besides our first pattern, the eight phase pattern, we
identified thirty-two other ones. Two of them are
process patterns not related to a single one of our
eight phase model. All other patterns can be related
to a special phase of our model. They are docu-
mented in a way which is described by an EBNF
grammar. This will be published in the forthcoming

Figure 9: Rating Performance per Phase

0

10

20

30

40

50

60

tim
et

 (h
)

1 2 3 4 5 6 7 8
Phase

PhD-thesis of Michael Gellner. Let us have a look at
a very short description of the patterns.

General process patterns
• Eight Phase Pattern: Conducting a usability

evaluation means to realize a process. Our proc-
ess view is explicitly formulated in the Eight
Phase Pattern.

• Epoch: The Epoch Pattern brings help to cate-
gorize the knowledge background of users.
Similar to the historical term an epoch is not
only characterized by temporal data (see the
definition for classic).

• Evolution: Evolution describes the fact that each
development in GUIs could transform the user.
As a result users can change their Epoch, the
state of Testing Persons can change.

Determining testing targets
• Target: In fact, usability is a conglomerate of

different attributes and not a single feature. The
Target Pattern suggests a set of common sub-
jects and calls on the evaluators (possibly de-
velopers) to decide for the needed ones.

• Effectiveness and Efficiency: Ergonomics will
never lead to exact results. This is characteristic
for social sciences and psychology. On the one
hand, it is important to accept that total effec-
tiveness is not realisable. On the other hand,
under-running a certain degree of efficiency can
lead to the total loss of all endeavours.

• Kind of Test: Rubin introduced the categories
kinds of tests (Rubin 1994). Different testing
methods are attached to these categories. This is
a helpful approach because Rubin associated
each category with special features.

• Criterion: The Criterion Patterns offers a set of
criterions that are suited well to parameterise the
situation in which an evaluation will be con-
ducted. This information is used in the next
phase to determine proper evaluation methods
(there are more than 50 evaluation methods
known).

Choosing testing methods
• Requirements Method Indexing (RMI): The

number of different methods complicates the se-
lection of a suitable one, especially for develop-
ers. For that reason RMI is introduced, i.e. an
algorithm that advices matching methods (based
on the information of the Criterion Pattern).

• Testing Person: A lot of evaluation methods can
be used only if there are matching testing per-
sons. The Testing Person Pattern proposes an

overview about which information is necessary
for these decisions.

• Recording Technology: Choosing a proper re-
cording technology determines highly what
analysis methods can be applied (manually,
semi automated, automated, quantitatively etc.).
So it is important to decide early what kind of
analyses will be done and to select the matching
technology.

• Duration: Another factor for the selection of a
fitting Recording Technology is the duration of
the signals that should be recorded . The Dura-
tion Pattern gives an overview about signals
that could be recorded and their duration. This
pattern is based on information that is given in
(Hilbert and Redmiles 1999).

Develop Testing Material
• Fingerprint: For some evaluation methods it is

helpful to imagine a priori how the data could
»look« and what errors are possible. Comparing
those »patterns« can lighten the analyses sig-
nificantly.

• Template Collection: The Template Collection
Pattern gives one idea evaluation materials for
developers could be offered.

• Encyclopaedia: Building up a small Encyclo-
paedia is another approach offering materials to
developers.

• Maieutics: The Maieutics Pattern shows the
principle that underlies software wizards.

• Wizard: Another alternative to the Template
Collection Pattern.

Planning and Organization
• Set: Often usability evaluations are similar to

movie sets – a lot of factors have to match ex-
actly at one time. The Set Pattern discusses the
sensible points of such a project.

• Mind Mapping: The Mind Mapping Pattern
shows a method to ship the risks that discussed
in the Set Pattern.

Executing the evaluation
• Deleting Testing Persons: The Deleting Testing

Persons Pattern shows solutions to avoid un-
wanted Epoch and Evolution effects.

• Atmosphere: This pattern points to different
facets of distortion in tests and offers solutions.

• Streamline: Streamline sets up on Spencers
suggestions to avoid breaks in inspections.

• Testing Subject: Testing Subject stresses testing
persons are not the testing subjects.

Figure 13: Usability evaluation patterns and their relations

can require

start with

supports

K1...K n

start with

has as constraint

has to b e
found

generates

i s
supposed

for

supports

keeps in
m ind

regards supports

requires

m arks
supports

realises

determ ines

describ es

causes/
requires

determ inessuggests m ethods

realises

determ ines
evaluation m ethods

K1...K n

determ ines
evaluation m ethods

requires

supports
m ethods

supports

supports

supports

Testing Person

Maieutics

Epoch

Testing Subject

Set

Com panion

Atm osphere

Requirem ents Method Indexing

Kind of Tes t

Effectiveness and Efficiency

Stream line

Wizard

FingerprintEncyclopaedia

Tem plate Collection

Cons is tency of Media

Recording Technology

Criterion

Evolution

Eight Phase Pattern

Relevance and Redundancy

Duration

Diary

Report

Mind Mapping

Fram ing

Target

requires

can alter

Deleting Tes ting Persons regards

influences

retrofits

Event
Recording

can support

Video Recording/
Screen Capturing

Markov
Feathering

Unused Access
Com m and after Error

Repetition

i s
supposed

for

Phase

• Companion: In this pattern, advice on how to
behave duringtests with testing persons are
given.

Editing data
• Consistency of Media: For a high degree of

automation and efficiency the Consistency of
Media Pattern is highly important.

• Framing: In this pattern analyses, ways of using
and reusing data are described.

• Relevance and Redundancy: Relevance and
Redundancy explains the ratio of unneeded
parts.

Evaluating data
Hint: These patterns are recognition patterns. These
patterns are different to the other repeatable solu-
tions to problems in similar contexts (due to Alex-
ander, GoF etc.).
• Markov: Markov Chains are an interesting ap-

proach to investigate actions that are performed
about different applications and windows.

• Feathering: Our first sessions showed some-

thing like body language by using input devices.
If this idea can be verified a powerful instru-
ment for model independent automation of us-
ability evaluations was given.

• Unused Access: Opening a GUI element with-
out using it, indicates a problem.

• Command after Error: The command an user
executes after an error can tell what the user
wanted originally. Error and next trial are im-
portant components to interpret a testing per-
sons mental model.

• Repetition: Another important error indicator
are commands the user executes more than one
time. This information can become even more
expressive if special items are used (e.g. the
ESC key).

Writing the study
• Diary: Diary shows a self reporting protocol

mechanism.
• Report: This pattern shows how information

that is managed with a Mind Mapping tool can
be used to generate reports.

Figure 13 shows a graph that gives further informa-
tion about how the patterns are related. Due to
(Borchers 2001) we call this as a pattern language.
These patterns continue the idea of patterns for in-
teraction design to patterns for usability evaluations.
In this way, the whole collection is a usability
evaluation pattern language.

6 Further Work
For finding appropriate tools and patterns the Eight
Phase Pattern was a helpful and effective approach.
Our investigations resulted in a pattern language for
usability evaluation. Further tools can be deduced
and have to be realized. The most important step is
the implementation of the observed error patterns for
automating the detection. As a result, the evaluator
would get video snippets with relevant scenes and
MouseMaps around the error situation. Based on
that material the evaluator must decide what steps
have to be taken next. A high amount of the time
consuming finding of the relevant positions of vid-
eos were eliminated. With the shown approaches
even software developers would be able to conduct
usability tests and to evaluate the results. Other
focuses are on the first phases. In the next month a
tool for selecting well suited methods based on the
algorithm in (Gellner 2002; Gellner 2003a) will be
completed.

With the MouseMap visualization we found some-
thing like a body language (another kind of pattern)
users show by working with mice and keyboards.
We assume that there are many aspects beyond sim-
ple causalities like Fitt’s Law or the Steering Rule
that can be investigated in greater detail.

References

Beck, K. (1999), Extreme programming explained: em-
brace change. Addison-Wesley.

Borchers, J., (2001) A Pattern Approach to Interaction
Design. John Wiley & Sons, Chichester, England.

Constantine, L. L. and Lockwood L. A. D (1999), Soft-
ware for use, a practical guide to the models and
methods of usage-centered design. Addison Wesley
Longman, Inc., Reading, Massachusetts.

Dumas, J. S. and Redish, J. C. (1999), A Practical Guide
to Usability Testing. Revised Edition. Intellect
Books Limited, Exeter, England.

Eckstein, J. (2002), XP – eXtreme Programming: Ein
leichtgewichtiger Software-Entwicklungsprozess.
In: basicpro, Vol. 35, 3, pp. 6-11.

Gellner, M. (2000), Modellierung des Usability Testing
Prozesses im Hinblick auf den Entwurf eines Com-
puter Aided Usability Engineering (CAUE) Sys-
tems. In: Rostocker Informatik-Berichte, Vol. 24,
pp. 5-21. Rostock, 2000.

Gellner, M. (2002), A Pattern Based Procedure for an
Automated Finding of the Right Testing Methods in
Usability Evaluations. In: Forbrig, P., Limbourg,
Q., Urban, B. und Vanderdonckt, J., Bricks &
Blocks: Towards Effective User Interface Patterns
and Components, Proceedings of the 9th Interna-
tional Workshop Design, Rostock, 2002, pp. 423-
427.

Gellner, M. (2003a), Automated Determination of Patterns
for Usability Evaluations. In: Hruby, P. und Søren-
sen, K. E. [Ed.]: Proceedings of the VikingPLoP
Conference 2002, Micorsoft Business Solutions,
ApS, 2003, pp. 65-80.

Gellner, M. (2003b), Mousemaps – ein Ansatz für eine
Technik zur Visualisierung der Nutzung von Soft-
ware und zur Automation der Entdeckung von Be-
dienungsfehlern. (submitted and accepted at
Mensch & Computer 2003)

Gellner, M.; Forbrig, P. (2003c), ObSys – a Tool for

Visualizing Usability Evaluation Patterns with
Mousemaps. HCI International 2003, Heraklion,
Greece

Gellner, M.; Forbrig, P. (2003d), Extreme Evaluations –
Lightweight Evaluations for Soft-ware Developers,
Workshop on SE and HCI, INTERACT 2003,
Zürich, Switzerland

Hilbert, D.M. und Redmiles D.F., (1999) Extracting Us-
ability information from user interface events.
Technical Report UCI-ICS-99-40, Department of
Information and Computer Science, University of
California, Irvine.

Mayhew, D. J. (1999), The Usability Engineering Lifecy-
cle. Morgan Kaufmann Publishers, Inc., Kali-
fornien, San Francisco.

Nielsen, J. (1993), Usability Engineering. AP Proffes-
sional, New Jersey.

Preece, J., (1994), Human-Computer-Interaction. Addi-
son-Wesley, Harlow,.

Rubin, J., (1994) Handbook of Usability Testing: How to
Plan, Design, and Conduct Effective Tests, John
Wiley & Sons, Inc..

Spencer, R., (2000) The Streamlined Cognitive Walk-
through Method, Working Around Social Con-
straints Encountered in a Software Development
Company. In: Turner, T., Szwillus, G., Czerwinski,
M. und Paternò, F. [Ed.], CHI 2000 – The Future is
here, Conference Proceedings, The Hague, Nether-
lands, 2000, pp. 353-359.

