
Patterns in Model-Based Development
D. Sinnig1,2, P. Forbrig1 and A. Seffah2

(1) Software Engineering Group (2) HCSE Group
Department of Computer Science Department of Computer Science

University of Rostock Concordia University
18051 Rostock, Germany 1455 De Maisonneuve Blvd. West

H3G 1M8, Montreal, Canada
pforbrig@informatik.uni-rostock.de {d sinnig, seffah}@cs.concordia.ca

Abstract: In this paper, we are exploring the roles of patterns in model-based design. In particular, we discuss the
fundamental concepts underlying a generic notation for task patterns. Different views of patterns are suggested using UML
and Concurrent Task Tree notations. A first classification of patterns according to models is also suggested.

Keywords: Task patterns, feature patterns, model-based design, tool support

1. Introduction

Historically, user Interface development has been treated as
a creative design activity rather than a systematic engineer-
ing process. However with the advent of pervasive com-
puting and mobile users the design and the development of
User Interfaces has become more and more complex. Thus,
user interfaces must be aware of dynamically changing con-
texts and withstand variations of the environment. From this
emerges the need for a structured engineering-like develop-
ment approach.

Model based approaches have the potential to establish
the basic foundation for a systematic engineering methodol-
ogy for User Interface development. Within a model based
UI development methodology the creation of the task model
has been commonly agreed to be a reasonable starting point.
We have recently been working on establishing and integrat-
ing patterns as buildings blocks for the creation of the task
model.

Starting from some general consideration, we will out-
line different kinds of patterns that can impact the creation
of the task model. Then we will introduce a 4-part ”strat-
egy” about the process of pattern application followed by
an analysis about what a formal notation for pattern for
the task model should encapsulate. Finally we will intro-
duce a tool that act as a wizard and guides the patterns user
throughout the process of pattern application.

2. General Considerations

A pattern can be defined as a reusablesolutionto a recurrent
problemthat occurs in a certaincontextof use. As the re-use
of ideas and knowledge becomes more and more crucial, a
pattern can be an effective way to transmit experience about
recurrent problems in the Software and UI development do-
main. Therefore the solution should be generic enough to
be applicable to many different contexts of use. However
in order to illustrate the possible use of a pattern it should
encapsulate a very concrete example.

At its best, well and correctly written patterns encapsu-
late best practices for the Software/UI design process. For
software developers unfamiliar with newly emerging plat-
forms, patterns provide a thorough understanding of con-
text of use and examples that show how the pattern ap-
plies in different types of applications. Therefore patterns
can act as mediators to cross-pollinate software and usabil-
ity engineering. Moreover pattern catalogs carry a signif-
icant amount of reusable design knowledge. However, in
order to really effectively re-use the knowledge of patterns
tool support is necessary. From this emerges the need for a
more formal, machine-readable format for patterns. In the
latter we will introduce a format for patterns for the task
model that can be interpreted by our tool the ”Task-Pattern-
Wizard”.

Well-document patterns are abstract solution descrip-
tions, which are applicable in different contexts of use.
In order to apply patterns they have to be adjusted to the



Figure 1. The Complicity of patterns and models for UI development

current context of use. This adaptation process can be in-
terpreted as a function (A) that takes the pattern (P) and
the current context (C) as input and produces a concrete
”sample solution” S.

A (P,C) = S

The application of a sample solution to a task model can
be described as a graph transformation, which can be in-
terpreted as a function (F) that takes a task model as a
parameter and outputs a modified task model again.

F(T, S) = T*

The task model (T) can be seen as a directed, connected,
non-cyclic graph, consisting of set of vertices (V), which
represent the tasks, subtasks, and operation. Moreover it
consists of a set of edges (E) that represent the relations
between the tasks.

T = (V, E)

To be more precise, one can also identify a sub-tree T’
from T and perform a transformation F’(T’,S)=T’* result-
ing in T*.
Within the next chapter we will be a little bit more specific
in specifying these ideas.

3. Task Models, Task Patterns and Feature Pat-
terns

3.1. Model-Based Approach

In a model based UI design methodology various models
are used to describe the relevant aspect of the User Inter-
face. Many facets exist as well as related models: Task,
domain (object), user, dialogue and presentation.

Definitions 1

A task model describes the static and dynamic orga-
nization of work.
A user modelcharacterizes users and specifies their
perception of tasks and organization of work, access
rights to data, and their preferences for interaction
modalities.
A business-object modelspecifies objects of the prob-
lem domain with attributes, methods and relations, as
well as the behaviour of these models.
A dialogue model describes the structure and be-
haviour of interaction devices, features, and modali-
ties.
A presentation modelextends the dialogue model by
graphical representations of its elements.

Although it is widely accepted to distinguish between exist-
ing and envisioned task models, the same constraint might
not hold for the other models. The task, object, and user
model have many interrelations. They are not independent
dimensions of a system. Each model depends on the other



two, as the following examples try to demonstrate:

• A multimedia application cannot be built without me-
dia players.

• A multimedia application cannot be built without me-
dia players.

• A database is very useful tool for data management
but it makes not much sense to use it for the develop-
ment of a text editor.

Definitions 2

Task = (Goal, Subtasks, Temp. Relations, Role(s),
Artefact, Tool(s), Device)
An artefact is an object, which is essential for a task.
Without this object the task cannot be performed. The
state of this artefact is usually changed in the course of
task performance.
A tool is an object that supports performing a task.
Such a tool can be substituted without changing the
intention of a task.
A goal is a state of the artefact, which is the intention
of performing the task.
A role is a stereotype of person who is expected to
perform the task.
A devicedescribes the stereotype of a computer, which
is necessary to perform the task.

Once we assume that the development of interactive sys-
tems might be based on envisioned task models, the con-
sequences of this assumption have to be elaborated: Due
to the close interrelationship of the models each modifica-
tion of the task model and an envisioned task model has
to be reflected by the other models. Hence, changes to an
envisioned task model leads to changes in all the other mod-
els. They might become or be envisioned, too. As a con-
sequence, we do not only have to distinguish between an
existing and envisioned task model, but also between an ex-
isting and envisioned user and object model.

Figure 1 demonstrates how all these models are interre-
lated and how patterns can support the development pro-
cess. However, there exist not only relations between mod-
els. Each task has relations to other tasks, to objects in the
role of artifacts and tools and to users. This is expressed by
definitions 2.

We believe that the creation of these models can be
driven by the application of patterns. Different types
of patterns exist (Design Patterns (Gamma et al., 1995),
UI Patterns (Tidwell, 2003), Interaction Design Patterns
(Welie, 2003), Process Pattern (Ambler, 1999), Task Pat-
tern (Breedvelt et al., 1997), etc.) Not every kind of pat-
terns is suitable for every model. Figure 1 visualizes which

model can be affected by which pattern. For example the
use of task- and feature patterns (see the section below) can
assist the creation of the envisioned task model. Whereas
design patterns (Gamma et al., 1995) are suitable in order
to establish the object model. On the other hand UI Patterns
are more applicable to less abstract models such as dialogue
and presentation.

With respect to the design of interactive systems ”among
all these models, the task model has today gained much at-
tention and many acceptances in the scientific community
to be the model from which a development should be initi-
ated” (Vanderdonckt and Puerta, 1999). Therefore users -
task analysis resulting in a task model is a common starting
point in model-based approaches. Possible intentions of the
user are captured and activities in order to reach their goals
are described. (Paterno, 2000)

From the user task model evolves the envisioned user
task model describing from the user’s point of view, how
activities can be performed in order to reach the user’s goal
while interacting with the application. (Paterno, 2000) In
other words, the envisioned user task model captures the
user task and system’s behavior with respect to the task-
set, in order to achieve a goal. In essence, the system will
be viewed through the set of tasks performed by the user,
which create input to, and output from the system.

The rest of this paper will focus on the envisioned user
task model and on the respectively applicable task- and fea-
ture pattern. (See shaded area in Figure 1)

3.2. Task- and Feature Patterns

3.2.1 Definition

In order to speed-up the creation of a user task model or in
order to improve an already existing task model, patterns
can be applied. In a subtle manner we distinguish between
two kinds of patterns that are applicable for the user task
model; Task Patterns and Feature Patterns.

• Task Patternsdescribe the activities the user has to
perform while pursuing a certain goal. The goal de-
scription acts as an unambiguous identification for
the pattern. In order to compose the pattern as generic
and flexible as possible the goal description should
entail at least one variable component. As the vari-
able part of the goal description changes, the con-
tent solution part of the pattern will adapt and change
accordingly. Task Patterns can be composed out of
sub-patterns. These sub-patterns can either be task-
patterns or feature-patterns.

• Feature Patterns, applied to the user-task model de-
scribe the activities the user has to perform using a



particular feature of the system. For the purpose of
this paper we define a feature as an aid or ”tool” the
user can use in order to fulfill a task. Examples of
these features can be ”Keyword Search”, ”Login” or
”Registration”. Feature patterns are identified by the
feature description, which should also contain a vari-
able part, to which the realization if the feature (stated
in the pattern) will adapt. Feature pattern can com-
prise other sub-feature patterns. Within this paper, we
concentrate only on the ”task” - oriented part of fea-
ture patterns. However feature always have a visual
appearance. Therefore it will remain to our future re-
search to investigate how feature patterns impact the
dialog and the presentation model of the user inter-
face. (See also Figure 1)

3.2.2 Process of Pattern Application

We have identified the following four sequential steps, in
order to practically apply either a task- or a feature pattern
to the task model:

• Identification: A sub-tree for pattern application
within the already existing task tree is identified. (At
the moment we restrict ourselves to single nodes as
sub-trees.)

• Selection:A pattern is selected which is appropriate
to be applied.

• Adaptation: The pattern will be adjusted to the cur-
rent context of use resulting in a sample solution. The
context can be either captured explicitly through user
inputs or implicitly for example through the analysis
of an already existing task model.

• Integration: The sample solution will be integrated
into the current task model resulting in a modified
task model. This can affect the task tree in 2 different
ways.

1. Adding a new branch to the tree: This occurs if
the pattern introduces a new feature that did not
exist before.

2. Modifying an existing branch: The application
of the pattern re-shuffles the particular branch
of the task tree in order to improve the arrange-
ment of the user activities with respect to a cer-
tain goal, the user has.

3.2.3 Notation for Patterns

Taken into consideration that patterns should be flexible to
different contexts we suggest that they contain variables.

These variables can act as placeholders for the particular
context of use. During the process of adaptation these place-
holders will be replaced by concrete values representing the
particular consequences of the current context of use. As
task models are mostly described in hierarchical structures
task patterns should follow this principle and describe the
task templates in a hierarchical fashion. This also influences
the variable concept introduced above, where the scope of
a variable will be its definition level and all associated sub-
levels.

In order to clarify the previously introduced concept
of generic patterns containing variable parts, we will now
sketch out some examples patterns. We will use different
notations like trees for detailed specifications and class di-
agrams for more abstract considerations. For the sake of
simplicity we will only used simplified versions of patterns
in this section. Please refer to the next section about how
patterns should be developed.

A typical task a user performs in many different appli-
cations is to find something. This can range from find-
ing a book at www.amazon.com over finding a used car at
www.cars.com until finding a computer in the network en-
vironment. All these tasks embody the same basic task and
can just be distinguished by the particular find object in the
goal description. In order to create a find Pattern we must
abstract from this particulate object and replace it by a vari-
able. Figure 2 gives an impression how the task tree of such
a pattern looks like. We will use the notation of CTTE (Pa-
terno, 2000).

Find information can be performed by browsing, search-
ing or using an agent. For more abstract considerations the
UML (Booch et al., 1999) notation for parametric classes is
used. Figure 3 shows the pattern of Figure 2 in this way. De-
tails of the task structure are omitted. Here the find pattern
contains the variable ”Information” which is a placeholder
for the particular type of information one is trying to find.

Figure 3 shows, that the “Find” pattern is composed out
of the feature patterns “Browse”, “Search” and “Agent”. It
is also shown, how the variables of each pattern are interre-
lated. The value of the variable “Information” of the “Find”
pattern will be used to assign the “Object” variable in all sub
patterns. However the variables “NumberElements” and
“Frequency” of the sub-patterns “Browse” and “Agent” re-
main undefined. During the process of adaptation the vari-
ables of each pattern must be resolved top-down and re-
placed by concrete values.

In Figure 4 we have bound the variable “Information”
with the value “Book” to create the sample solution “Find
Book”; and with the value “Car” to create the sample so-
lution “Find Car”. Please note that with the binding of a
concrete value to the variable “Information” in the goal de-
scription, the body of the pattern (sub -tasks) has changed



Figure 3. The Find pattern and its sub-patterns

Figure 4. The Find pattern and its sample solutions



accordingly.
After the pattern adaptation process, the sample solution

can be integrated in an already existing task model. In Fig-
ure 4 “Find Car” has been integrated into the Car-shop task
model. This process of integrations has been visualized
using the inheritance relationship and can be interpreted as:
The Car-shop has inherited all methods (sub-tasks) from
“Find Car”.As mentioned previously, a pattern can be com-
posed out of several sub-patterns.

Figure 5. The ”run E-Shop” pattern and its sub-
patterns

In Figure 5 (as well as in Figure 3) we have visualized
this pattern - sub-pattern relationship using the concept of
class - aggregation. The pattern “run E-shop” consists of
the sub-patterns “Find” and “Buy”. If we place patterns in
this kind of relationship, we have to pay special attention to
the variables of the pattern. A variable, defined at the super
- pattern can affect the variables used in the sub-patterns. In
Figure 5 the variable “Product” of the “run E-Shop” pattern
affects the variables “Information” and “Object” of the sub-
patterns “Find” and “Buy”. During the process of pattern
adaptation the “Information” and “Object” will be bound
with the value of “Product”. We can see that a modification
in a high level pattern can affect all sub-patterns.

In order to signal the category or the type of a pattern
we use UML class stereotypes. In Figure 5 all patterns are
of the type “Task”. Whereas in Figure 4 the “Find” pattern
is a task pattern and the patterns “Browse”, “Search” and
“Agent” are “Feature” patterns.

In the case of the example of a Car-Shop displayed in
Figure 6 the variable Product of the “E-Shop” pattern has
been assign with the value “Car” in order to create the sam-
ple solution “CarShop”. This value has then been passed
to the sub-patterns “Buy” and “Find” in order to assign
the variables “Information” and “Object” and subsequently
to create the sample solutions “Buy Car” and “Find Car”.
In the case of “Find Car” the value of the variable “Infor-
mation” (“Car”) is used to automatically assign the vari-
able “Object” in all sub-patterns. However in order to fully
adapt the sub-patterns “Browse” and “Agent” one will only
have to resolve the variables “NumberElements” and “Fre-

quency”.
The top-down process of pattern adaptation can be

greatly assisted by tools, such as the “Task-Pattern-Wizard”
(introduced later in this paper). The Wizard runs through
the pattern tree and questions the user each time it encoun-
ters a variable, which has not been resolved yet. In the
case the Car-Shop in Figure 6 the Wizard would question
the user for the values of the variables “Product”, “Num-
ber Elements” and “Frequency”. Eventually after resolv-
ing all variables the sample solution will be transformed
into a concrete task structure. Figure 7 illustrates a cut-out
of the modified task model visualized with CTTE. Please
note, that the Search task in Figure 7 has been adopted from
(Breedvelt et al., 1997).
3.2.4 TOOL SUPPORT - THE TASK-PATTERN

WIZARD

As mentioned above tool support is necessary in order to
apply patterns efficiently. Moreover by integrating the idea
of patterns into development tools, patterns can be a driving
force throughout the entire UI development process. There-
fore we are currently developing a prototype of a task pat-
tern wizard, with which we are aiming to support all phases
of the pattern integration, ranging from pattern selection
over patter adaptation until pattern integration.

The task pattern wizard is able to read and visualize
already existing task - descriptions, that are specified in
XIML (XIML, 2003). It is also capable to interpret Task
Patterns descriptions that are documented in a prototypical
XML based mark-up language. After analyzing the pattern
it will guide the user step by step through the pattern adap-
tation and integration process.

At its best pattern should not only be a vehicle for re-use
experiences and knowledge. Beyond this they should also
gather user-center design best practices. Ideally a pattern
should not be invented at hoc it should furthermore evolve
gradually. Therefore we have to find methods in order to
validate if a pattern really embodies a ”good” design solu-
tion.

In the case of task patterns the natural users behavior
should be analyzed in order to create a GOMS (Card et al.,
1983) model. GOMS is an acronym for Goal, Operators,
Methods and Selection rules. During GOMS analysis tasks
are recursively subdivided into sub tasks. Tasks that cannot
be split any further are named operators. GOMS compar-
isons can be used to oppose different design solutions. The
execution effort of the operators can be estimated and used
to predict the execution time of higher-level tasks, as a total
of the individual operator times.

Moreover task simulations can be used to evaluate the
appropriateness of patterns. With the help of tools such
as the XIML Task Simulator (Dittmar et al., 2003), (For-
brig and Dittmar, 2003) the user can step through possible
task scenarios (Pluralistic walkthrough) (Nielsen and Mack,



Figure 6. The CarShop sample solution

Figure 7. Car-Shop in CTTE



Figure 8. Task-Pattern-Wizard during the Integration phase

1994) within the scope of the underlying task model that has
been established using the patterns to be evaluated. Fur-
thermore tasks can be group to dialogs in order to form a
prototypical user interface (i.e. by using the Dialog-Graph-
Simulator (Dittmar et al., 2003), (Forbrig and Dittmar,
2003) Using the cognitive walkthrough method (Nielsen
and Mack, 1994) users can walk through the interface in
order to accomplish predefined tasks. Whenever the inter-
face blocks the user from completing a task, it is an indica-
tion that the interface or the underlying task description is
missing something.

4. Conclusions

In this paper, we demonstrated how patterns could be used
in conjunction with other models to support the UI devel-
opment process. Some examples demonstrated the core
ideas. During the workshop some more examples will be
presented. It can also be discussed which kinds of user
interface patterns exists and how they can be integrated in
the development process. Our prototype wizard has the po-
tential to cope with such problems as well. One problem is
the representation of the user interface. From our point of
view XUL is a good candidate for that. UIML and XIML
have the problem of lacking tool support at the moment. We
expect that the workshop will give us hints in this direction.

References

Ambler, S. (1999).Process Patterns: Building Large-Scale
Systems Using Object Technology. Cambridge Univer-
sity Press.

Booch, G., Rumbaugh, J., and Jacobson, I. (1999).The Uni-
fied Modeling Language User Guide. Addison-Wesley.

Breedvelt, I., Paterno, F., and Severiins, C. (1997).
Reusable structures in task models. InProceedings of
Design, Specification, Verification of Interactive Sys-
tems ’97, pages 251 – 265, Granada. Springer Verlag.

Card, S., Moran, T., and Newell, A. (1983).The Psychology
of Human-Computer Interaction. Lawrence Erlbaum
Assoc.

Chin, D. (1986). User modeling in uc, the unix consultant.
In Proceedings of CHI 1986, pages 24–28.

Dittmar, A., Forbrig, P., and Reichart, D. (2003). Model-
based development of nomadic applications. InPro-
ceedings of IMC 2003, Rostock.

Forbrig, P. and Dittmar, A. (2003). Interfacing business
object models and user models with action models.
In Proceedings of HCI International 2003, Greece.
Lawrence Erlbaum Associates.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design Patterns: Elements of Object-Oriented Soft-
ware. Addison-Wesley.

Nielsen, J. and Mack, R. (1994).Usability Inspection Meth-
ods. John Wiley & Sons, New York, NY. ISBN 0-471-
01877-5.

Paterno, F. (2000).Model-Based Design and Evaluation of
Interactive Applications. Springer.

Schlungbaum, E. (1996). Model-based user interface soft-
ware tools - current state of declarative models. Tech-
nical Report 96-30.



Tidwell, J. (2003). Ui patterns and techniques.
UI Patterns and Techniques, http://time-
tripper.com/uipatterns/index.php.

Vanderdonckt, J. and Puerta, A. (1999). Introduction to
computer-aided design of user interfaces. InPro-

ceedings of the CADUI’99, Louvain-la-Neuve. Kluwer
Academic Publishers.

Welie, M. (2003). Patterns in interaction design.
http://www.welie.com.

XIML (2003). http://www.ximl.org.



A Additional Definitions

Review: User Task Model

User Task modeling is an established technique used to analyze, optimize and design human activity and
user interfaces. Task models typically describe this data as a hierarchical decomposition of goals, tasks and
subtasks and a set of plans that describe the relationships between each set of peer tasks. The nodes of the
task tree may contain attributes about the importance, frequency of use and the information needed in order
to perform the tasks.

Review: User Model

The User model captures the essence of the user’s static and dynamic characteristics. It is a widely studied
field and we adopt a suitable user model in our research. We can usually model the user knowledge or the user
preferences (Chin, 1986). Modeling the user background knowledge is useful for personalizing the format of
the information (e.g. using an appropriate language understood by the user). Modeling the user preferences
is useful for personalizing the content of the interface (e.g. by filtering the results of a database query, or as an
aid to a software agent that proactively notifies the user about interesting information). stated. We can further
imagine creating a user model for each type or each individual user or just one user model for the canonical,
typical user.

Review: Object (Domain) Model

The object model encapsulates the important entities of the particular application domain together with their
attributes, methods and relationships (Schlungbaum, 1996). Often the object model is visualized using UML
class diagrams.

Review: Dialog Model

The dialog model specifies the user commands, interaction techniques, interface responses and command
sequences that the interface allows during user sessions. It must encompass all static and dynamic information
the user needs for the dialog with the machine. This information is grouped into several dialog views. The
dialog view contains functional and logical related elements of the user task model and the domain model
(information need to perform the task)

Review: Presentation Model

The presentation model expresses the layout and graphic appearance of the user interfaces. It maps the
elements of the dialog view to abstract interaction objects, such as menubar, groupbox, listbox), which are
device and language independent. The abstract interaction objects are grouped and hierarchical ordered by
functionality, only. Moreover attributes are attached to the AIO, such as size, position, color...


